Двоичный код. Виды и длина двоичного кода. Обратный двоичный код. Как читать двоичный (бинарный) код Чтение двоичного кода

Жаропонижающие средства для детей назначаются педиатром. Но бывают ситуации неотложной помощи при лихорадке, когда ребенку нужно дать лекарство немедленно. Тогда родители берут на себя ответственность и применяют жаропонижающие препараты. Что разрешено давать детям грудного возраста? Чем можно сбить температуру у детей постарше? Какие лекарства самые безопасные?

Двоичный код представляет собой форму записи информации в виде единиц и нулей. Такая является позиционной с основанием 2. На сегодняшний день двоичный код (таблица, представленная немного ниже, содержит некоторые примеры записи чисел) используется во всех без исключения цифровых устройствах. Его популярность объясняется высокой надежность и простотой данной формы записи. Двоичная арифметика весьма проста, соответственно, ее легко реализовать и на аппаратном уровне. компоненты (или как их еще называют - логические) весьма надежны, так как они оперируют в работе всего двумя состояниями: логической единицы (есть ток) и логического нуля (нет тока). Тем самым они выгодно отличаются от аналоговых компонентов, работа которых основана на переходных процессах.

Как составляется двоичная форма записи?

Давайте разберемся, каким образом формируется такой ключ. Один разряд двоичного кода может содержать всего два состояния: ноль и единицу (0 и 1). При использовании двух разрядов появляется возможность записать четыре значения: 00, 01, 10, 11. Трехразрядная запись содержит восемь состояний: 000, 001 … 110, 111. В результате получаем, что длина двоичного кода зависит от числа разрядов. Это выражение можно записать с помощью следующей формулы: N =2m, где: m - это количество разрядов, а N - число комбинаций.

Виды двоичных кодов

В микропроцессорах такие ключи применяются для записи разнообразной обрабатываемой информации. Разрядность двоичного кода может существенно превышать и его встроенной памяти. В таких случаях длинные числа занимают несколько ячеек запоминающего устройства и обрабатываются с помощью нескольких команд. При этом все сектора памяти, которые выделены под многобайтный двоичный код, рассматриваются в качестве одного числа.

В зависимости от необходимости предоставления той или иной информации, различают следующие виды ключей:

  • беззнаковые;
  • прямые целыезнаковые коды;
  • знаковые обратные;
  • знаковые дополнительные;
  • код Грея;
  • код Грея-Экспресс.;
  • дробные коды.

Рассмотрим более детально каждый из них.

Беззнаковый двоичный код

Давайте разберемся, что же представляет собой такой вид записи. В целых беззнаковых кодах каждый разряд (двоичный) представляет степень цифры два. При этом наименьшее число, которое можно записать в такой форме, равно нулю, а максимальное можно представить следующей формулой: М=2 п -1. Эти два числа полностью определяют диапазон ключа, которым можно выразить такой двоичный код. Давайте рассмотрим возможности упомянутой формы записи. При использовании данного вида беззнакового ключа, состоящего из восьми разрядов, диапазон возможных чисел составит от 0 до 255. Шестнадцатиразрядный код будет иметь диапазон от 0 до 65535. В восьмиразрядных процессорах для хранения и записи таких чисел используют два сектора памяти, которые располагаются в соседних адресатах. Работу с такими ключами обеспечивают специальные команды.

Прямые целые знаковые коды

В данном виде двоичных ключей старший разряд используется для записи знака числа. Нуль соответствует плюсу, а единица - минусу. В результате введения данного разряда диапазон закодированных чисел смещается в отрицательную сторону. Получается, что восьмиразрядный знаковый целый двоичный ключ может записать числа в диапазоне от -127 до +127. Шестнадцатиразрядный - в диапазоне от -32767 до +32767. В восьмиразрядных микропроцессорах для хранения подобных кодов используют два соседних сектора.

Недостатком такой формы записи является то, что знаковые и цифровые разряды ключа необходимо обрабатывать раздельно. Алгоритмы программ, работающих с этими кодами, получаются очень сложными. Для изменения и выделения знаковых разрядов необходимо применять механизмы маскировки этого символа, что способствует резкому увеличению размеров программного обеспечения и уменьшению его быстродействия. С целью устранения данного недостатка был введен новый вид ключа - обратный двоичный код.

Знаковый обратный ключ

Данная форма записи отличается от прямых кодов только тем, что отрицательное число в ней получается путем инвертирования всех разрядов ключа. При этом цифровые и знаковые разряды идентичны. Благодаря этому, алгоритмы работы с таким видом кодов существенно упрощаются. Однако обратный ключ требует специальный алгоритм для распознавания символа первого разряда, вычисления абсолютной величины числа. А также восстановления знака результирующего значения. Более того, в обратном и прямом кодах числа для записи нуля используют два ключа. Несмотря на то что это значение не имеет положительного или отрицательного знака.

Знаковый дополнительный код двоичного числа

Данный вид записи не имеет перечисленных недостатков предыдущих ключей. Такие коды позволяют проводить непосредственное суммирование как положительных, так и отрицательных чисел. При этом не проводится анализ знакового разряда. Все это стало возможным благодаря тому факту, что дополнительные числа представляют собой естественное кольцо символов, а не искусственные образования, такие как прямые и обратные ключи. Более того, важным фактором является, то что произвести вычисления дополнений в двоичных кодах чрезвычайно просто. Для этого достаточно к обратному ключу добавить единицу. При использовании данного вида знакового кода, состоящего из восьми разрядов, диапазон возможных чисел составит от -128 до +127. Шестнадцатиразрядный ключ будет иметь диапазон от -32768 до +32767. В восьмиразрядных процессорах для хранения таких чисел также используют два соседних сектора.

Двоичный дополнительный код интересен наблюдаемым эффектом, который называют явлением распространения знака. Давайте разберемся, что это значит. Данный эффект заключается в том, что в процессе преобразования однобайтового значения в двухбайтовое достаточно каждому биту старшего байта назначить значения знаковых битов младшего байта. Получается, что для хранения знакового можно воспользоваться старшими битами. При этом значение ключа совершенно не изменяется.

Код Грея

Данная форма записи, по сути, является одношаговым ключом. То есть в процессе перехода от одного значения к другому меняется всего лишь один бит информации. При этом погрешность при считывании данных приводит к переходу от одного положения к другому с незначительным смещением по времени. Однако получение совершенно неверного результата углового положения при таком процессе полностью исключается. Достоинством такого кода является его способность зеркально отображать информацию. Например, инвертируя старшие биты, можно просто менять направление отсчета. Это происходит благодаря управляющему входу Complement. При этом выдаваемое значение может быть как возрастающим, так и спадающим при одном физическом направлении вращения оси. Так как информация, записанная в ключе Грея, имеет исключительно кодированный характер, который не несет реальных числовых данных, то перед дальнейшей работой требуется предварительно преобразовать его в обычную бинарную форму записи. Осуществляется это с помощью специального преобразователя - декодера Грей-Бинар. Данное устройство легко реализуется на элементарных логических элементах как аппаратным, так и программным способом.

Код Грея-Экспресс

Стандартный одношаговый ключ Грей подходит для решений, которые представлены в виде чисел, два. В случаях, где необходимо реализовывать иные решения, из такой формы записи вырезают и используют только средний участок. В результате сохраняется одношаговость ключа. Однако в таком коде началом числового диапазона не является нуль. Он смещается на заданное значение. В процессе обработки данных от генерируемых импульсов отнимают половину разницы между начальным и редуцированным разрешением.

Представление дробного числа в двоичном ключе с фиксированной запятой

В процессе работы приходится оперировать не только целыми цифрами, но и дробными. Такие числа можно записывать с помощью прямых, обратных и дополнительных кодов. Принцип построения упомянутых ключей такой же, как и у целых. До сих пор мы считали, что двоичная запятая должна находиться справа от младшего разряда. Но это не так. Она может располагаться и слева от старшего разряда (в таком случае в качестве переменной можно записывать исключительно дробные числа), и посередине переменной (можно записывать смешанные значения).

Представление двоичного кода с плавающей запятой

Такая форма применяется для записи либо наоборот - очень малых. В качестве примера можно привести межзвездные расстояния или размеры атомов и электронов. При вычислении таких значений пришлось бы применять двоичный код с очень большой разрядностью. Однако нам нет необходимости учитывать космические расстояние с точностью до миллиметра. Поэтому форма записи с фиксированной запятой в данном случае неэффективна. Для отображения таких кодов используется алгебраическая форма. То есть число записывается как мантисса, умноженная на десять в степени, отображающей нужный порядок числа. Следует знать, что мантисса не должна быть больше единицы, а после запятой не должен записываться ноль.

Считается, что двоичное исчисление было изобретено в начале 18-го века математиком из Германии Готфридом Лейбницем. Однако, как недавно открыли ученые, задолго до полинезийского острова Мангареву использовали данный вид арифметики. Несмотря на то что колонизация практически полностью уничтожила оригинальные системы исчисления, ученые восстановили сложные двоичные и десятичные виды счета. Кроме того, ученый Когнитивист Нуньес утверждает, что кодирование двоичным кодом применялось в древнем Китае еще в 9-м веке до н. э. Другие древние цивилизации, например, индейцы майя, также использовали сложные комбинации десятичных и бинарных систем для отслеживания временных интервалов и астрономических явлений.

Компьютеры не понимают слов и цифр так, как это делают люди. Современное программное обеспечение позволяет конечному пользователю игнорировать это, но на самых низких уровнях ваш компьютер оперирует двоичным электрическим сигналом, который имеет только два состояния : есть ток или нет тока. Чтобы «понять» сложные данные, ваш компьютер должен закодировать их в двоичном формате.

Двоичная система основывается на двух цифрах – 1 и 0, соответствующим состояниям включения и выключения, которые ваш компьютер может понять. Вероятно, вы знакомы с десятичной системой. Она использует десять цифр – от 0 до 9, а затем переходит к следующему порядку, чтобы сформировать двузначные числа, причем цифра из каждого следующего порядка в десять раз больше, чем предыдущая. Двоичная система аналогична, причем каждая цифра в два раза больше, чем предыдущая.

Подсчет в двоичном формате

В двоичном выражении первая цифра равноценна 1 из десятичной системы. Вторая цифра равна 2, третья – 4, четвертая – 8, и так далее – удваивается каждый раз. Добавление всех этих значений даст вам число в десятичном формате.

1111 (в двоичном формате) = 8 + 4 + 2 + 1 = 15 (в десятичной системе)

Учет 0 даёт нам 16 возможных значений для четырех двоичных битов. Переместитесь на 8 бит, и вы получите 256 возможных значений. Это занимает намного больше места для представления, поскольку четыре цифры в десятичной форме дают нам 10000 возможных значений. Конечно, бинарный код занимает больше места, но компьютеры понимают двоичные файлы намного лучше, чем десятичную систему. И для некоторых вещей, таких как логическая обработка, двоичный код лучше десятичного.

Следует сказать, что существует ещё одна базовая система, которая используется в программировании: шестнадцатеричная . Хотя компьютеры не работают в шестнадцатеричном формате, программисты используют её для представления двоичных адресов в удобочитаемом формате при написании кода. Это связано с тем, что две цифры шестнадцатеричного числа могут представлять собой целый байт, то есть заменяют восемь цифр в двоичном формате. Шестнадцатеричная система использует цифры 0-9, а также буквы от A до F, чтобы получить дополнительные шесть цифр.

Почему компьютеры используют двоичные файлы

Короткий ответ: аппаратное обеспечение и законы физики. Каждый символ в вашем компьютере является электрическим сигналом, и в первые дни вычислений измерять электрические сигналы было намного сложнее. Было более разумно различать только «включенное» состояние, представленное отрицательным зарядом, и «выключенное» состояние, представленное положительным зарядом.

Для тех, кто не знает, почему «выключено» представлено положительным зарядом, это связано с тем, что электроны имеют отрицательный заряд, а больше электронов – больше тока с отрицательным зарядом.

Таким образом, ранние компьютеры размером с комнату использовали двоичные файлы для создания своих систем, и хотя они использовали более старое, более громоздкое оборудование, они работали на тех же фундаментальных принципах. Современные компьютеры используют, так называемый, транзистор для выполнения расчетов с двоичным кодом.

Вот схема типичного транзистора:

По сути, он позволяет току течь от источника к стоку, если в воротах есть ток. Это формирует двоичный ключ. Производители могут создавать эти транзисторы невероятно малыми – вплоть до 5 нанометров или размером с две нити ДНК. Это то, как работают современные процессоры, и даже они могут страдать от проблем с различением включенного и выключенного состояния (хотя это связано с их нереальным молекулярным размером, подверженным странностям квантовой механики ).

Почему только двоичная система

Поэтому вы можете подумать: «Почему только 0 и 1? Почему бы не добавить ещё одну цифру?». Хотя отчасти это связано с традициями создания компьютеров, вместе с тем, добавление ещё одной цифры означало бы необходимость выделять ещё одно состояние тока, а не только «выключен» или «включен».

Проблема здесь в том, что если вы хотите использовать несколько уровней напряжения, вам нужен способ легко выполнять вычисления с ними, а современное аппаратное обеспечение, способное на это, не жизнеспособно как замена двоичных вычислений. Например, существует, так называемый, тройной компьютер , разработанный в 1950-х годах, но разработка на том и прекратилась. Тернарная логика более эффективна, чем двоичная, но пока ещё нет эффективной замены бинарного транзистора или, по крайней мере, нет транзистора столь же крошечных масштабов, что и двоичные.

Причина, по которой мы не можем использовать тройную логику, сводится к тому, как транзисторы соединяются в компьютере и как они используются для математических вычислений. Транзистор получает информацию на два входа, выполняет операцию и возвращает результат на один выход.

Таким образом, бинарная математика проще для компьютера, чем что-либо ещё. Двоичная логика легко преобразуется в двоичные системы, причем True и False соответствуют состояниям Вкл и Выкл .

Бинарная таблица истинности, работающая на двоичной логике, будет иметь четыре возможных выхода для каждой фундаментальной операции. Но, поскольку тройные ворота используют три входа, тройная таблица истинности имела бы 9 или более. В то время как бинарная система имеет 16 возможных операторов (2^2^2), троичная система имела бы 19683 (3^3^3). Масштабирование становится проблемой, поскольку, хотя троичность более эффективна, она также экспоненциально более сложна.

Кто знает? В будущем мы вполне возможно увидим тройничные компьютеры, поскольку бинарная логика столкнулась с проблемами миниатюризации. Пока же мир будет продолжать работать в двоичном режиме.

Давайте разберемся как же все таки переводить тексты в цифровой код ? Кстати, на нашем сайте вы можете перевести любой текст в десятичный, шестнадцатеричный, двоичный код воспользовавшись Калькулятором кодов онлайн .

Кодирование текста.

По теории ЭВМ любой текст состоит из отдельных символов. К этим символам относятся: буквы, цифры, строчные знаки препинания, специальные символы («»,№, (), и т.д.), к ним, так же, относятся пробелы между словами.

Необходимый багаж знаний. Множество символов, при помощи которых записываю текст, называется АЛФАВИТОМ.

Число взятых в алфавите символов, представляет его мощность.

Количество информации можно определить по формуле: N = 2b

  • N - та самая мощность (множество символов),
  • b - Бит (вес взятого символа).

Алфавит, в котором будет 256 может вместить в себя практически все нужные символы. Такие алфавиты называют ДОСТАТОЧНЫМИ.

Если взять алфавит мощностью 256, и иметь в виду что 256 = 28

  • 8 бит всегда называют 1 байт:
  • 1 байт = 8 бит.

Если перевести каждый символ в двоичный код, то этот код компьютерного текста будет занимать 1 байт.

Как текстовая информация может выглядеть в памяти компьютера?

Любой текст набирают на клавиатуре, на клавишах клавиатуры, мы видим привычные для нас знаки (цифры, буквы и т.д.). В оперативную память компьютера они попадают только в виде двоичного кода. Двоичный код каждого символа, выглядит восьмизначным числом, например 00111111.

Поскольку, байт - это самая маленькая адресуемая частица памяти, и память обращена к каждому символу отдельно - удобство такого кодирование очевидно. Однако, 256 символов - это очень удобное количество для любой символьной информации.

Естественно, встал вопрос: Какой конкретно восьми разрядный код принадлежит каждому символу? И как осуществить перевод текста в цифровой код?

Этот процесс условный, и мы вправе придумать различные способы для кодировки символов . Каждый символ алфавита имеет свой номер от 0 до 255. И каждому номеру присвоен код от 00000000 до 11111111.

Таблица для кодировки - это «шпаргалка», в которой указаны символы алфавита в соответствии порядковому номеру. Для различных типов ЭВМ используют разные таблицы для кодировки.

ASCII(или Аски), стала международным стандартом для персональных компьютеров. Таблица имеет две части.

Первая половина для таблицы ASCII. (Именно первая половина, стала стандартом.)

Соблюдение лексикографического порядка, то есть, в таблице буквы (Строчные и прописные) указаны в строгом алфавитном порядке, а цифры по возрастанию, называют принципом последовального кодирования алфавита.

Для русского алфавита тоже соблюдают принцип последовательного кодирования .

Сейчас, в наше время используют целых пять систем кодировок русского алфавита(КОИ8-Р, Windows. MS-DOS, Macintosh и ISO). Из-за количества систем кодировок и отсутствия одного стандарта, очень часто возникают недоразумения с переносом русского текста в компьютерный его вид.

Одним из первых стандартов для кодирования русского алфавит а на персональных компьютерах считают КОИ8("Код обмена информацией, 8-битный"). Данная кодировка использовалась в середине семидесятых годов на серии компьютеров ЕС ЭВМ, а со средины восьмидесятых, её начинают использовать в первых переведенных на русский язык операционных системах UNIX.

С начала девяностых годов, так называемого, времени, когда господствовала операционная система MS DOS, появляется система кодирования CP866 ("CP" означает "Code Page", "кодовая страница").

Гигант компьютерных фирм APPLE, со своей инновационной системой, под упралением которой они и работали (Mac OS), начинают использовать собственную систему для кодирования алфавита МАС.

Международная организация стандартизации (International Standards Organization, ISO)назначает стандартом для русского языка еще одну систему для кодирования алфавита , которая называется ISO 8859-5.

А самая распространенная, в наши дни, система для кодирования алфавита, придумана в Microsoft Windows, и называется CP1251.

С второй половины девяностых годов, была решена проблема стандарта перевода текста в цифровой код для русского языка и не только, введением в стандарт системы, под названием Unicode. Она представлена шестнадцатиразрядной кодировкой, это означает, что на каждый символ отводится ровно по два байта оперативной памяти. Само собой, при такой кодировке, затраты памяти увеличены в два раза. Однако, такая кодовая система позволяет переводить в электронный код до 65536 символов.

Специфика стандартной системы Unicode, является включением в себя абсолютно любого алфавита, будь он существующим, вымершим, выдуманным. В конечном счете, абсолютно любой алфавит, в добавок к этом, система Unicode, включает в себя уйму математических, химических, музыкальных и общих символов.

Давайте с помощью таблицы ASCII посмотрим, как может выглядеть слово в памяти вашего компьютера.

Очень часто случается так, что ваш текст, который написан буквами из русского алфавита, не читается, это обусловлено различием систем кодирования алфавита на компьютерах. Это очень распространенная проблема, которая довольно часто обнаруживается.

Tool to make binary conversions. Binary code is a numeric system using base 2 used in informatics, symbols used in binary notation are generally zero and one (0 and 1).

Answers to Questions

You can edit this Q&A (add new info, improve translation, etc.) " itemscope="" itemtype="http://schema.org/Question">

How to convert a number in binary?

To convert a number to binary (with zeroes and ones) consists in a from base 10 to base 2 (natural binary code )

Example: 5 (base 10) = 1*2^2+0*2^1+1*2^0 = 101 (base 2)

The method consists in making successive divisions by 2 and noting the remainder (0 or 1 ) in the reverse order.

Example: 6/2 = 3 remains 0, then 3/2 = 1 remains 1, then 1/2 = 0 remains 1. The successive remainders are 0,1,1 so 6 is written 110 in binary .

You can edit this Q&A (add new info, improve translation, etc.) " itemscope="" itemtype="http://schema.org/Question">

How to convert a text in binary?

Associate with each letter of the alphabet a number, for example by using the code or the . This will replace each letter by a number that can then be converted to binary (see above).

Example: AZ is 65,90 () so 1000001,1011010 in binary

Similarly for binary to text translation, convert the binary to a number and then associate that number with a letter in the desired code.

You can edit this Q&A (add new info, improve translation, etc.) " itemscope="" itemtype="http://schema.org/Question">

How to translate binary

The binary does not directly translate, any number encoded in binary remains a number. On the other hand, it is common in computer science to use binary to store text, for example by using the table, which associates a number with a letter. An translator is available on dCode.

You can edit this Q&A (add new info, improve translation, etc.) " itemscope="" itemtype="http://schema.org/Question">

What is a bit?

A bit (contraction of binary digit) is a symbol in the binary notation: 0 or 1.

You can edit this Q&A (add new info, improve translation, etc.) " itemscope="" itemtype="http://schema.org/Question">

What is 1"s complement?

In informatics, one"s complement is writing a number negatively inversing 0 and 1.

Example: 0111 becomes 1000, so 7 becomes -7

You can edit this Q&A (add new info, improve translation, etc.) " itemscope="" itemtype="http://schema.org/Question">

What is 2"s complement?

In informatics, one"s complement is writing a number negatively inversing 0 and 1 and adding 1.

Example: 0111 becomes 1001

Ask a new question

Source code

dCode retains ownership of the source code of the script Binary Code online. Except explicit open source licence (indicated Creative Commons / free), any algorithm, applet, snippet, software (converter, solver, encryption / decryption, encoding / decoding, ciphering / deciphering, translator), or any function (convert, solve, decrypt, encrypt, decipher, cipher, decode, code, translate) written in any informatic langauge (PHP, Java, C#, Python, Javascript, Matlab, etc.) which dCode owns rights will not be released for free. To download the online Binary Code script for offline use on PC, iPhone or Android, ask for price quote on

Бинарный код представляет собой текст, инструкции процессора компьютера или другие данные с использованием любой двухсимвольной системы. Чаще всего это система 0 и 1. назначает шаблон бинарных цифр (бит) каждому символу и инструкции. Например, бинарная строка из восьми бит может представлять любое из 256 возможных значений и поэтому может генерировать множество различных элементов. Отзывы о бинарном коде мирового профессионального сообщества программистов свидетельствуют о том, что это основа профессии и главный закон функционирования вычислительных систем и электронных устройств.

Расшифровка бинарного кода

В вычислениях и телекоммуникациях бинарные коды используются для различных методов кодирования символов данных в битовые строки. Эти методы могут использовать строки фиксированной или переменной ширины. Для перевода в бинарный код существует множество наборов символов и кодировок. В коде с фиксированной шириной каждая буква, цифра или другой символ представляется битовой строкой той же длины. Эта битовая строка, интерпретируемая как бинарное число, обычно отображается в кодовых таблицах в восьмеричной, десятичной или шестнадцатеричной нотации.

Расшифровка бинарного кода: битовая строка, интерпретируемая как бинарное число, может быть переведена в десятичное число. Например, нижний регистр буквы a, если он представлен битовой строкой 01100001 (как и в стандартном коде ASCII), также может быть представлен как десятичное число 97. Перевод бинарного кода в текст представляет собой ту же процедуру, только в обратном порядке.

Как это работает

Из чего состоит бинарный код? Код, используемый в цифровых компьютерах, основан на в которой есть только два возможных состояния: вкл. и выкл., обычно обозначаемые нулем и единицей. Если в десятичной системе, которая использует 10 цифр, каждая позиция кратна 10 (100, 1000 и т. д.), то в двоичной системе каждое цифровое положение кратно 2 (4, 8, 16 и т. д.). Сигнал двоичного кода представляет собой серию электрических импульсов, которые представляют числа, символы и операции, которые необходимо выполнить.

Устройство, называемое часами, посылает регулярные импульсы, а такие компоненты, как транзисторы, включаются (1) или выключаются (0), чтобы передавать или блокировать импульсы. В двоичном коде каждое десятичное число (0-9) представлено набором из четырех двоичных цифр или битов. Четыре основных арифметических операции (сложение, вычитание, умножение и деление) могут быть сведены к комбинациям фундаментальных булевых алгебраических операций над двоичными числами.

Бит в теории связи и информации представляет собой единицу данных, эквивалентную результату выбора между двумя возможными альтернативами в системе двоичных номеров, обычно используемой в цифровых компьютерах.

Отзывы о бинарном коде

Характер кода и данных является базовой частью фундаментального мира ИТ. C этим инструментом работают специалисты мирового ИТ-«закулисья» — программисты, чья специализация скрыта от внимания рядового пользователя. Отзывы о бинарном коде от разработчиков свидетельствуют о том, что эта область требует глубокого изучения математических основ и большой практики в сфере матанализа и программирования.

Бинарный код — это простейшая форма компьютерного кода или данных программирования. Он полностью представлен двоичной системой цифр. Согласно отзывам о бинарном коде, его часто ассоциируется с машинным кодом, так как двоичные наборы могут быть объединены для формирования исходного кода, который интерпретируется компьютером или другим аппаратным обеспечением. Отчасти это верно. использует наборы двоичных цифр для формирования инструкций.

Наряду с самой базовой формой кода двоичный файл также представляет собой наименьший объем данных, который протекает через все сложные комплексные аппаратные и программные системы, обрабатывающие сегодняшние ресурсы и активы данных. Наименьший объем данных называется битом. Текущие строки битов становятся кодом или данными, которые интерпретируются компьютером.

Двоичное число

В математике и цифровой электронике двоичное число — это число, выраженное в системе счисления base-2 или двоичной цифровой системе, которая использует только два символа: 0 (ноль) и 1 (один).

Система чисел base-2 представляет собой позиционную нотацию с радиусом 2. Каждая цифра упоминается как бит. Благодаря своей простой реализации в цифровых электронных схемах с использованием логических правил, двоичная система используется почти всеми современными компьютерами и электронными устройствами.

История

Современная бинарная система чисел как основа для двоичного кода была изобретена Готтфридом Лейбницем в 1679 году и представлена ​​в его статье «Объяснение бинарной арифметики». Бинарные цифры были центральными для теологии Лейбница. Он считал, что двоичные числа символизируют христианскую идею творчества ex nihilo, или творение из ничего. Лейбниц пытался найти систему, которая преобразует вербальные высказывания логики в чисто математические данные.

Бинарные системы, предшествующие Лейбницу, также существовали в древнем мире. Примером может служить китайская бинарная система И Цзин, где текст для предсказания основан на двойственности инь и ян. В Азии и в Африке использовались щелевые барабаны с бинарными тонами для кодирования сообщений. Индийский ученый Пингала (около 5-го века до н.э.) разработал бинарную систему для описания просодии в своем произведении «Чандашутрема».

Жители острова Мангарева во Французской Полинезии использовали гибридную бинарно-десятичную систему до 1450 года. В XI веке ученый и философ Шао Юн разработал метод организации гексаграмм, который соответствует последовательности от 0 до 63, как представлено в бинарном формате, причем инь равен 0, янь — 1. Порядок также является лексикографическим порядком в блоках элементов, выбранных из двухэлементного набора.

Новое время

В 1605 году обсудил систему, в которой буквы алфавита могут быть сведены к последовательностям бинарных цифр, которые затем могут быть закодированы как едва заметные вариации шрифта в любом случайном тексте. Важно отметить, что именно Фрэнсис Бэкон дополнил общую теории бинарного кодирования наблюдением, что этот метод может использован с любыми объектами.

Другой математик и философ по имени Джордж Бул опубликовал в 1847 году статью под названием «Математический анализ логики», в которой описывается алгебраическая система логики, известная сегодня как булева алгебра. Система была основана на бинарном подходе, который состоял из трех основных операций: AND, OR и NOT. Эта система не была введена в эксплуатацию, пока аспирант из Массачусетского технологического института по имени Клод Шеннон не заметил, что булева алгебра, которую он изучил, была похожа на электрическую цепь.

Шеннон написал диссертацию в 1937 году, в которой были сделаны важные выводы. Тезис Шеннона стал отправной точкой для использования бинарного кода в практических приложениях, таких как компьютеры и электрические схемы.

Другие формы двоичного кода

Битовая строка не является единственным типом двоичного кода. Двоичная система в целом — это любая система, которая допускает только два варианта, таких как переключатель в электронной системе или простой истинный или ложный тест.

Брайль — это тип двоичного кода, который широко используется слепыми людьми для чтения и записи на ощупь, названный по имени его создателя Луи Брайля. Эта система состоит из сеток по шесть точек в каждой, по три на столбец, в котором каждая точка имеет два состояния: приподнятые или углубленные. Различные комбинации точек способны представлять все буквы, цифры и знаки пунктуации.

Американский стандартный код для обмена информацией (ASCII) использует 7-битный двоичный код для представления текста и других символов в компьютерах, оборудовании связи и других устройствах. Каждой букве или символу присваивается номер от 0 до 127.

Двоично-кодированное десятичное значение или BCD — это двоичное кодированное представление целочисленных значений, которое использует 4-битный граф для кодирования десятичных цифр. Четыре двоичных бита могут кодировать до 16 различных значений.

В номерах с кодировкой BCD только первые десять значений в каждом полубайте являются корректными и кодируют десятичные цифры с нулем, через девять. Остальные шесть значений являются некорректными и могут вызвать либо машинное исключение, либо неуказанное поведение, в зависимости от компьютерной реализации арифметики BCD.

Арифметика BCD иногда предпочтительнее числовых форматов с плавающей запятой в коммерческих и финансовых приложениях, где сложное поведение округления чисел является нежелательным.

Применение

Большинство современных компьютеров используют программу бинарного кода для инструкций и данных. Компакт-диски, DVD-диски и диски Blu-ray представляют звук и видео в двоичной форме. Телефонные звонки переносятся в цифровом виде в сетях междугородной и мобильной телефонной связи с использованием импульсно-кодовой модуляции и в сетях передачи голоса по IP.

Поддержите проект — поделитесь ссылкой, спасибо!
Читайте также
Лучшие картинки и фото на аватарку: подборка для девушек и женщин Лучшие картинки и фото на аватарку: подборка для девушек и женщин Активируем Eset NOD32 Antivirus Активатор есет нод 32 Активируем Eset NOD32 Antivirus Активатор есет нод 32 Как перепрошить роутер — пошаговая инструкция Обновление для роутера тп линк Как перепрошить роутер — пошаговая инструкция Обновление для роутера тп линк