Простой но мощный транзисторный усилитель. Две схемы унч на транзисторах. Ламповый усилитель звука

Жаропонижающие средства для детей назначаются педиатром. Но бывают ситуации неотложной помощи при лихорадке, когда ребенку нужно дать лекарство немедленно. Тогда родители берут на себя ответственность и применяют жаропонижающие препараты. Что разрешено давать детям грудного возраста? Чем можно сбить температуру у детей постарше? Какие лекарства самые безопасные?

Усилитель низкой частоты (УНЧ) является составной частью большинства радиотехнических устройств как то телевизора, плеера, радиоприемника и различных приборов бытового назначения. Рассмотрим две простые схемы двухкаскадного УНЧ на .

Первый вариант УНЧ на транзисторах

В первом варианте усилитель построен на кремниевых транзисторах n-p-n проводимости. Входной сигнал поступает через переменный резистор R1, который в свою очередь является нагрузочным сопротивлением для схемы источника сигнала. подсоединены к коллекторной электроцепи транзистора VT2 усилителя.

Настройка усилителя первого варианта сводится к подбору сопротивлений R2 и R4. Величину сопротивлений нужно подобрать такой, чтобы миллиамперметр, подключенный в коллекторную цепь каждого транзистора, показывал ток в районе 0,5…0,8 мА. По второй схеме необходимо также выставить коллекторный ток второго транзистора путем подбора сопротивления резистора R3.

В первом варианте возможно применить транзисторы марки КТ312, или их зарубежные аналоги, однако при этом необходимо будет выставить правильное смещение напряжения транзисторов путем подбора сопротивлений R2, R4. Во втором варианте в свою очередь, возможно применить кремневые транзисторы марки КТ209, КТ361, или зарубежные аналоги. При этом выставить режимы работы транзисторов можно путем изменения сопротивления R3.

В коллекторную электроцепь транзистора VT2 (обоих усилителей) взамен наушников возможно подключить динамик с высоким сопротивлением. Если же необходимо получить более мощное усиление звука, то можно собрать усилитель на , который обеспечивает усиление до 15 Вт.

Портативный USB осциллограф, 2 канала, 40 МГц....

Добрый день уважаемый хабраюзер, я хочу рассказать тебе о основах построения усилителей звуковой частоты. Я думаю эта статья будет интересна тебе если ты никогда не занимался радиоэлектроникой, и конечно же она будет смешна тем кто не расстаётся с паяльником. И поэтому я попытаюсь расказать о данной теме как можно проще и к сожалению опуская некоторые нюансы.

Усилитель звуковой частоты или усилитель низкой частоты, что бы разобраться как он всё таки работает и зачем там так много всяких транзисторов, резисторов и конденсаторов, нужно понять как работает каждый элемент и попробовать узнать как эти элементы устроены. Для того что бы собрать примитивный усилитель нам понадобятся три вида электронных элементов: резисторы, конденсаторы и конечно транзисторы.

Резистор

Итак, резисторы у нас характеризуются сопротивлением электрическому току и это сопротивление измеряется в Омах. Каждый электропроводящий металл или сплав металлов имеют своё удельное сопротивление . Если мы возьмём проволоку определённой длинны с большим удельным сопротивлением, то у нас получится самый настоящий проволочный резистор. Для того что бы резистор был компактным, проволоку можно намотать на каркас. Таким образом у нас получится проволочный резистор, но он имеет ряд недостатков, поэтому резисторы обычно изготавливаются из металлокерамического материала. Вот так обозначаются резисторы на электрических схемах:

Верхний вариант обозначения принят в США, нижний в России и в Европе.

Конденсатор

Конденсатор представляет из себя две металлических пластины разделённые диэлектриком . Если мы подадим на эти пластины постоянное напряжение, то появится электрическое поле, которое после отключения питания будет поддерживать на пластинах положительный и отрицательный заряды соответственно.

Основа конструкции конденсатора - две токопроводящие обкладки, между которыми находится диэлектрик

Таким образом конденсатор способен накапливать электрический заряд. Эта способность накапливать электрический заряд называется электрическая ёмкость , что есть главный параметр конденсатора. Электрическая ёмкость измеряется в Фарадах. Что ещё характерно, это то что когда мы заряжаем или разряжаем конденсатор, через него идёт электрический ток. Но как только конденсатор зарядился, он перестаёт пропускать электрический ток, а это потому что конденсатор принял заряд источника питания, то есть потенциал конденсатора и источника питания одинаковые, а если нет разности потенциалов (напряжения), нет электрического тока. Таким образом, заряженный конденсатор не пропускает постоянный электрический ток, но пропускает переменный ток, так как при подключении его к переменному электрическому току, он будет постоянно заряжаться и разряжаться. На электрических схемах его обозначают так:

Транзистор

В нашем усилителе мы будем использовать самые простые биполярные транзисторы . Транзистор изготавливают из полупроводникового материала . Нужное для нас свойство это материала, - наличие в них свободных носителей как положительных, так и отрицательных зарядов. В зависимости от того каких зарядов больше, полупроводники различают на два типа по проводимости: n -тип и p -тип (n-negative, p-positive). Отрицательные заряды - это электроны, освободившиеся с внешних оболочек атомов кристаллической решетки, а положительные - так называемые дырки. Дырки - это вакантные места, остающиеся в электронных оболочках после ухода из них электронов. Условно обозначим атомы с электроном на на внешней орбите синим кружком со знаком минус, а атомы с вакантным местом - пустым кружком:


Каждый биполярный транзистор состоит из трёх зон таких полупроводников, эти зоны называют база, эмиттер и коллектор.


Рассмотрим пример работы транзистора. Для этого подключим к транзистору две батарейки на 1,5 и на 5 вольт, плюсом к эмиттеру, а минусом к базе и коллектору соответственно (смотрим рисунок):

На контакте базы и эмиттера появится электромагнитное поле, которое буквально вырывает электроны с внешней орбиты атомов базы и переносит их в эмиттер. Свободные электроны оставляют за собой дырки, и занимают вакантные места уже в эмиттере. Это же электромагнитное поле оказывает такое же воздействие на атомы коллектора, а так как база в транзисторе достаточно тонкая относительно эмиттера и коллектора, электроны коллектора достаточно легко проходят сквозь неё в эмиттер, причём в гораздо большем количестве чем из базы.

Если же мы отключим напряжение от базы, то никакого электромагнитного поля не будет, а база будет выполнять роль диэлектрика, и транзистор будет закрыт. Таким образом при подаче на базу достаточно малого напряжения, мы можем контролировать большее поданное напряжение на эмиттер и коллектор.

Рассмотренный нами транзистор pnp -типа, так как у него две p -зоны и одна n -зона. Так же существуют npn -транзисторы, принцип действия в них такой же, но электрический ток течёт в них в противоположную сторону, чем в рассмотренном нами транзисторе. Вот так биполярные транзисторы обозначаются на электрических схемах, стрелка указывает направление тока:

УНЧ

Ну что ж, попробуем спроектировать из этого всего усилитель низкой частоты. Для начала нам нужен сигнал который мы будем усиливать, это может быть звуковая карта компьютера или любое другое звуковое устройство с линейным выходом. Допустим наш сигнал с максимальной амплитудой примерно 0,5 вольта при токе 0,2 А, примерно такой:

А что бы заработал самый простой 4-х омный 10 ваттный динамик, нам нужно увеличить амплитуду сигнала до 6 вольт, при силе тока I = U / R = 6 / 4 = 1,5 A.

Итак, попробуем подключить наш сигнал к транзистору. Вспомните нашу схему с транзистором и двумя батарейками, теперь вместо 1,5 вольтовой батарейки у нас у нас сигнал линейного выхода. Резистор R1 выполняет роль нагрузки, дабы не было короткого замыкания и наш транзистор не сгорел.

Но тут возникают сразу две проблемы, во-первых наш транзистор npn -типа, и открывается только при положительном значении полуволны, а при отрицательном закрывается.

Во-вторых транзистор, как и любой полупроводниковый прибор имеет нелинейные характеристики в отношении напряжения и тока и чем меньше значения тока и напряжения тем сильнее эти искажения:

Мало того что от нашего сигнала осталась только полуволна, так она ещё и будет искажена:


Это есть так называемое искажение типа ступенька.

Чтобы избавиться от этих проблем, нам нужно сместить наш сигнал в рабочую зону транзистора, где поместится вся синусоида сигнала и нелинейные искажения будут незначительны. Для этого подают на базу напряжение смещения, допустим в 1 вольт, с помощью составленного из двух резисторов R2 и R3 делителя напряжения.

А наш сигнал входящий в транзистор будет выглядеть вот так:

Теперь нам нужно изъять наш полезный сигнал с коллектора транзистора. Для этого установим конденсатор C1:

Как мы помним конденсатор пропускает переменный ток и не пропускает постоянный, поэтому он нам будет служить фильтром пропускающим только наш полезный сигнал - нашу синусоиду. А постоянная составляющая не прошедшая через конденсатор будет рассеиваться на резисторе R1. Переменный же ток, наш полезный сигнал, будет стремиться пройти через конденсатор, так сопротивление конденсатора для него ничтожно мало по сравнению с резистором R1.

Вот и получился первый транзисторный каскад нашего усилителя. Но существуют ещё два маленьких нюанса:

Мы не знаем на 100% какой сигнал входит в усилитель, вдруг всё таки источник сигнала неисправен, всякое бывает, опять же статическое электричество или вместе с полезным сигналом проходит постоянное напряжение. Это может стать причиной не правильной работы транзистора или даже спровоцировать его поломку. Для этого установим конденсатор С2, он подобно конденсатору С1 будет блокировать постоянный электрический ток, а так же ограниченная ёмкость конденсатора не будет пропускать пики большой амплитуды, которые могут испортить транзистор. Такие скачки напряжения обычно происходят при включении или отключении устройства.

И второй нюанс, любому источнику сигнала требуется определённая конкретная нагрузка (сопротивление). По этому для нас важно входное сопротивление каскада. Для регулировки входного сопротивления добавим в цепь эмиттера резистор R4:

Теперь мы знаем назначение каждого резистора и конденсатора в транзисторном каскаде. Давайте теперь попробуем рассчитать какие номиналы элементов нужно использовать для него.

Исходные данные:

  • U = 12 В - напряжение питания;
  • U бэ ~ 1 В - Напряжение эмиттер-база рабочей точки транзистора;
Выбираем транзистор, для нас подойдёт npn -транзистор 2N2712
  • P max = 200 мВт - максимальная рассеиваемая мощность;
  • I max = 100 мА - максимальный постоянный ток коллектора;
  • U max = 18 В - макcимально допустимое напряжение коллектор-база / коллектор-эмиттер (У нас напряжение питания 12 В, так что хватает с запасом);
  • U эб = 5 В - макcимально допустимое напряжение эмиттер-база (наше напряжение 1 вольт ± 0,5 вольта);
  • h21 = 75-225 - коэффициент усиления тока базы, принимается минимальное значение - 75;
  1. Рассчитываем максимальную статическую мощность транзистора, её берут на 20% меньше максимальной рассеиваемой мощности, дабы наш транзистор не работал на пределе своих возможностей:

    P ст.max = 0,8*P max = 0,8 * 200мВт = 160 мВт;

  2. Определим ток коллектора в статическом режиме (без сигнала), не смотря на что на базу не подаётся напряжение через транзистор всё равно в малой степени протекает электрический ток.

    I к0 = P ст.max / U кэ , где U кэ - напряжение перехода коллектор-эмиттер. На транзисторе рассеивается половина напряжения питания, вторая половина будет рассеиваться на резисторах:

    U кэ = U / 2;

    I к0 = P ст.max / (U / 2) = 160 мВт / (12В / 2) = 26,7 mA;

  3. Теперь рассчитаем сопротивление нагрузки, изначально у нас был один резистор R1, который выполнял эту роль, но так как мы добавили резистор R4 для увеличения входного сопротивления каскада, теперь сопротивление нагрузки будет складываться из R1 и R4:

    R н = R1 + R4 , где R н - общее сопротивление нагрузки;

    Отношение между R1 и R4 обычно принимается 1 к 10:

    R1 = R4 *10;

    Рассчитаем сопротивление нагрузки:

    R1 + R4 = (U / 2) / I к0 = (12В / 2) / 26,7 mA = (12В / 2) / 0,0267 А = 224,7 Ом;

    Ближайшие номиналы резисторов это 200 и 27 Ом. R1 = 200 Ом, а R4 = 27 Ом.

  4. Теперь найдем напряжение на коллекторе транзистора без сигнала:

    U к0 = (U кэ0 + I к0 * R4 ) = (U - I к0 * R1 ) = (12В -0,0267 А * 200 Ом) = 6,7 В;

  5. Ток базы управления транзистором:

    I б = I к / h21 , где I к - ток коллектора;

    I к = (U / R н );

    I б = (U / R н ) / h21 = (12В / (200 Ом + 27 Ом)) / 75 = 0,0007 А = 0,07 mA;

  6. Полный ток базы определяется напряжением смещения на базе, которое устанавливается делителем R2 и R3 . Ток задаваемый делителем должен быть в 5-10 раз больше тока управления базы (I б ), что бы собственно ток управления базы не влиял на напряжение смещения. Таким образом для значения тока делителя (I дел ) принимаем 0,7 mA и рассчитываем R2 и R3 :

    R2 + R3 = U / I дел = 12В / 0,007 = 1714,3 Ом

  7. Теперь рассчитаем напряжение на эмиттере в состоянии покоя транзистора (U э ):

    U э = I к0 * R4 = 0,0267 А * 27 Ом = 0,72 В

    Да, I к0 ток покоя коллектора, но этот же ток проходит и через эмиттер, так что I к0 считают током покоя всего транзистора.

  8. Рассчитываем полное напряжение на базе (U б ) с учётом напряжения смещения (U см = 1В):

    U б = U э + U см = 0,72 + 1 = 1,72 В

    Теперь с помощью формулы делителя напряжения находим значения резисторов R2 и R3 :

    R3 = (R2 + R3 ) * U б / U = 1714,3 Ом * 1,72 В / 12 В = 245,7 Ом;

    Ближайший номинал резистора 250 Ом;

    R2 = (R2 + R3 ) - R3 = 1714,3 Ом - 250 Ом = 1464,3 Ом;

    Номинал резистора выбираем в сторону уменьшения, ближайший R2 = 1,3 кОм.

  9. Конденсаторы С1 и С2 обычно устанавливают не менее 5 мкФ. Ёмкость выбирается такой что бы конденсатор не успевал перезаряжаться.

Заключение

На выходе каскада мы получаем пропорционально усиленный сигнал и по току и по напряжению, то есть по мощности. Но одного каскада нам не хватит для требуемого усиления, так что придётся добавлять следующий и следующий… И так далее.

Рассмотренный расчёт довольно поверхностный и такая схема усиления конечно же не используется в строении усилителей, мы не должны забывать о диапазоне пропускаемых частот, искажениях и многом другом.

Недавно обратился некий человек с просьбой собрать ему усилитель достаточной мощности и раздельными каналами усиления по низким, средним и высоким частотам. до этого не раз уже собирал для себя в качестве эксперимента и, надо сказать, эксперименты были весьма удачными. Качество звучания даже недорогих колонок не очень высокого уровня заметно при этом улучшается по сравнению, например, с вариантом применения пассивных фильтров в самих колонках. К тому же появляется возможность довольно легко менять частоты раздела полос и коэффициент усиления каждой отдельно взятой полосы и, таким образом, проще добиться равномерной АЧХ всего звукоусилительного тракта. В усилителе были применены готовые схемы, которые до этого не раз были опробованы в более простых конструкциях.

Структурная схема

На рисунке ниже показана схема 1 канала:

Как видно из схемы, усилитель имеет три входа, один из которых предусматривает простую возможность добавления предусилителя-корректора для проигрывателя винила (при такой необходимости), переключатель входов, предварительный усилитель-тембролок (также трёхполосный, с регулировкой уровней ВЧ/СЧ/НЧ), регулятор громкости, блок фильтров на три полосы с регулировкой уровня усиления каждой полосы с возможностью отключения фильтрации и блок питания для оконечных усилителей большой мощности (нестабилизированный) и стабилизатор для «слаботочной» части (предварительные каскады усиления).

Предварительный усилитель-темброблок

В качестве него была применена схема, не раз проверенная до этого, которая при своей простоте и доступности деталей показывает довольно хорошие характеристики. Схема (как и все последующие) в своё время была опубликована в журнале «Радио» и затем не раз публиковалась на различных сайтах в интернете:

Входной каскад на DA1 содержит переключатель уровня усиления (-10; 0; +10 дБ), что упрощает согласование всего усилителя с различными по уровню источниками сигнала, а на DA2 собран непосредственно регулятор тембров. Схема не капризна к некоторому разбросу номиналов элементов и не требует никакого налаживания. В качестве ОУ можно применить любые микросхемы, применяемые в звуковых трактах усилителей, например здесь (и в последующих схемах) пробовал импортные ВА4558, TL072 и LM2904. Подойдёт любая, но лучше, конечно, выбирать варианты ОУ с возможно меньшим уровнем собственного шума и высоким быстродействием (коэффициентом нарастания входного напряжения). Эти параметры можно посмотреть в справочниках (даташитах). Конечно, здесь вовсе не обязательно применять именно эту схему, вполне можно, например, сделать не трёхполосный, а обычный (стандартный) двухполосный темброблок. Но не «пассивную» схему, а с каскадами усиления-согласования по входу и выходу на транзисторах или ОУ.

Блок фильтров

Схем фильтров, также, при желании можно найти множество, так как публикаций на тему многополосных усилителей сейчас достаточно. Для облегчения этой задачи и просто для примера, я приведу здесь несколько возможных схем, найденных в различных источниках:

— схема, которая была применена мной в этом усилителе, так как частоты раздела полос оказались как раз такие, которые и нужны были «заказчику» — 500 Гц и 5 кГц и ничего пересчитывать не пришлось.

— вторая схема, попроще на ОУ.

И ещё одна возможная схема, на транзисторах:

Как уже писал ваше, выбрал первую схему из-за довольно качественной фильтрации полос и соответствии частот разделения полос заданным. Только на выходах каждого канала (полосы) были добавлены простые регуляторы уровня усиления (как это сделано, например, в третьей схеме, на транзисторах). Регуляторы можно поставить от 30 до 100 кОм. Операционные усилители и транзисторы во всех схемах можно заменить на современные импортные (с учётом цоколёвки!) для получения лучших параметров схем. Никакой настройки все эти схемы не требуют, если не требуется изменить частоты раздела полос. К сожалению, дать информацию по пересчёту этих частот раздела я не имею возможности, так как схемы искались для примера «готовые» и подробных описаний к ним не прилагалось.

В схему блока фильтров (первая схема из трёх) была добавлена возможность отключения фильтрации по каналам СЧ и ВЧ. Для этого были установлены два кнопочных переключателя типа П2К, с помощью которых просто можно замкнуть точки соединения входов фильтров - R10C9 с их соответствующими выходами — «выход ВЧ» и «выход СЧ». В этом случае по этим каналам идёт полный звуковой сигнал.

Усилители мощности

С выхода каждого канала фильтра сигналы ВЧ-СЧ-НЧ подаются на входы усилителй мощности, которые, также, можно собрать по любой из известных схем в зависимости от необходимой мощности всего усилителя. Я делал УМЗЧ по известной давно схеме из журнала «Радио», №3, 1991 г., стр.51. Здесь даю ссылку на «первоисточник», так как по поводу этой схемы существует много мнений и споров по повод её «качественности». Дело в том, что на первый взгляд это схема усилителя класса «B» с неизбежным присутствием искажений типа «ступенька», но это не так. В схеме применено токовое управление транзисторами выходного каскада, что позволяет избавиться от этих недостатков при обычном, стандартном включении. При этом схема очень простая, не критична к применяемым деталям и даже транзисторы не требует особого предварительного подбора по параметрам К тому же схема удобна тем, что мощные выходные транзисторы можно ставить на один теплоотвод попарно без изолирующих прокладок, так как выводы коллекторов соединены в точке «выхода», что очень упрощает монтаж усилителя:

При настройке лишь ВАЖНО подобрать правильные режимы работы транзисторов предоконечного каскада (подбором резисторов R7R8) - на базах этих транзисторов в режиме «покоя» и без нагрузки на выходе (динамика) должно быть напряжение в пределах 0,4-0,6 вольт. Напряжение питания для таких усилителей (их, соответственно, должно быть 6 штук) поднял до 32 вольт с заменой выходных транзисторов на 2SA1943 и 2SC5200, сопротивление резисторов R10R12 при этом следует также увеличить до 1,5 кОм (для «облегчения жизни» стабилитронам в цепи питания входных ОУ). ОУ также были заменены на ВА4558, при этом становится не нужна цепь «установки нуля» (выходы 2 и 6 на схеме) и, соответственно меняется цоколёвка при пайке микросхемы. В результате при проверке каждый усилитель по этой схеме выдавал мощность до 150 ватт (кратковременно) при вполне адекватной степени нагрева радиатора.

Блок питания УНЧ

В качестве блока питания были использованы два трансформатора с блоками выпрямителей и фильтров по обычной, стандартной схеме. Для питания НЧ полосных каналов (левый и правый каналы) - трансформатор мощностью 250 ватт, выпрямитель на диодных сборках типа MBR2560 или аналогичных и конденсаторы 40000 мкф х 50 вольт в каждом плече питания. Для СЧ и ВЧ каналов - трансформатор мощностью 350 ватт (взят из сгоревшего ресивера «Ямаха»), выпрямитель — диодная сборка TS6P06G и фильтр — два конденсатора по 25000 мкф х 63 вольт на каждое плечо питания. Все электролитические конденсаторы фильтров зашунтированы плёночными конденсаторами ёмкостью 1 мкф х 63 вольта.

В общем, блок питания может быть и с одним трансформаторм, конечно, но при его соответствующей мощности. Мощность усилителя в целом в данном случае определяется исключительно возможностями источника питания. Все предварительные усилители (темброблок, фильтры) - запитаны также от одного из этих трансформаторов (можно от любого из них), но через дополнительный блок двуполярного стабилизатора, собранный на МС типа КРЕН (или импортных) или по любой из типовых схем на транзисторах.

Конструкция самодельного усилителя

Это, пожалуй, был самый сложный момент в изготовлении, так как подходящего готового корпуса не нашлось и пришлось выдумывать возможные варианты:-)) Чтобы не лепить кучу отдельных радиаторов, решил использовать корпус-радиатор от автомобильного 4-канального усилителя, довольно больших размеров, примерно такой:

Все «внутренности» были, естественно, извлечены и компоновка получилась примерно такой (к сожалению фотографию соответствующую не сделал):

— как видно, в эту крышку-радиатор установились шесть плат оконечных УМЗЧ и плата предварительного усилителя-темброблока. Плата блока фильтров уже не влезла, поэтому была закреплена на добавленной затем конструкции из алюминиевого уголка (её видно на рисунках). Также, в этом «каркасе» были установлены трансформаторы, выпрямители и фильтры блоков питания.

Вид (спереди) со всеми переключателями и регуляторами получился такой:

Вид сзади, с колодками выходов на динамики и блоком предохранителей (поскольку никакие схемы электронной защиты не делались из-за недостатка места в конструкции и чтобы не усложнять схему):

В последующем каркас из уголка предполагается, конечно, закрыть декоративными панелями для придания изделию более «товарного» вида, но делать это будет уже сам «заказчик», по своему личному вкусу. А в целом, по качеству и мощности звучания, конструкция получилась вполне себе приличная. Автор материала: Андрей Барышев (специально для сайта сайт ).

Евгения Смирнова

Посылать свет в глубину человеческого сердца - вот назначение художника

Содержание

Подключение динамиков к ноутбуку, телевизору или другому источнику музыки иногда требует усиления сигнала с помощью отдельного устройства. Идея собрать усилитель своими руками хороша, если вы склонны к работе с печатными платами в домашних условиях и имеете некоторые технические навыки.

Как сделать усилитель звука

Начало работ по сборке усиливающего устройства для колонок того или иного типа состоит из поиска инструментов и комплектующих. Схема усилителя на печатной плате собирается с помощью паяльника на термоустойчивой опоре. Рекомендуется использовать специальные паяльные станции. Если сборка своими руками проводится для целей тестирования схемы или для использования в течение небольшого срока, подойдет вариант «на проводах», но вам потребуется больше места для размещения комплектующих. Печатная плата гарантирует компактность устройства и удобство в дальнейшем применении.

Дешевый и распространенный усилитель для наушников или малых динамиков создается на базе микросхемы – миниатюрного управляющего блока с заранее вшитым набором команд управления электрическим сигналом. К схеме с микросхемой остается добавить всего несколько резисторов и конденсаторов. Суммарная стоимость усилителя любительского класса в итоге значительно ниже цены готовой профессиональной аппаратуры из ближайшего магазина, но и функционал ограничивается изменением выходной громкости аудиосигнала.

Помните об особенностях компактных одноканальных усилителей, собираемых своими руками на основе микросхем серий TDA и их аналогов. Микросхема выделяет большое количество тепла в процессе работы, поэтому вы должны исключить или минимизировать ее соприкосновение с другими деталями устройства. Радиаторная решетка для отвода тепла рекомендуется к использованию. В зависимости от модели микросхемы и мощности усилителя увеличивается размер требуемого радиатора. Если усилитель собирается в корпусе, следует предварительно спланировать место под теплоотвод.

Другая особенность сборки усилителя звука своими руками – низкое потребляемое напряжение. Это позволяет использовать простой усилитель в автомобилях (питание от авто аккумулятора), в дороге или дома (питание от специального блока или батарей). Некоторые упрощенные усилители звука требуют напряжения тока всего в 3 Вольта. Потребляемая мощность зависит от того, какая степень усиления звукового сигнала требуется. Усилитель звука c плеера для стандартных наушников потребляет около 3 Ватт.

Начинающему радиолюбителю рекомендуется воспользоваться компьютерной программой для создания и просмотра принципиальных схем. Файлы для таких программ могут иметь расширение *.lay – они создаются и редактируются в популярном виртуальном инструменте Sprint Layout. Создание схемы своими руками с нуля имеет смысл, если вы уже набрались опыта и желаете экспериментировать с полученными знаниями. Иначе ищите и скачивайте готовые файлы, по которым можно быстро собрать замену низкочастотному усилителю для автомагнитолы или цифровому комбоусилителю для гитары.

Для ноутбука

Собирается звукоусилитель своими руками для ноутбука в одном из двух случаев: встроенные динамики вышли из строя либо же их громкости и качества звучания недостаточно для ваших нужд. Потребуется простой усилитель, рассчитанный на мощность внешних колонок до 2 Ватт, и сопротивление обмоток до 4 Ом. Для его сборки своими руками кроме стандартных инструментов радиолюбителя (плоскогубцы, паяльная станция) потребуется печатная плата, микросхема TDA 7231, блок питания на 9 Вольт. Самостоятельно подберите корпус, в котором разместятся компоненты усилителя.

В список закупаемых комплектующих добавьте следующие позиции:

  • конденсатор неполярный 0,1 мкФ – 2 шт.;
  • конденсатор полярный 100 мкФ – 1 шт.;
  • конденсатор полярный 220 мкФ – 1 шт.;
  • конденсатор полярный 470 мкФ – 1шт.;
  • резистор постоянный 10 КОм – 1 шт.;
  • резистор постоянный 4,7 Ом – 1 шт.;
  • выключатель двухпозиционный – 1 шт.;
  • гнездо для выхода на громкоговоритель – 1 шт.

Порядок сборки определите самостоятельно в зависимости от того, какую электросхему формата *.lay вы скачали. Радиатор подберите такого размера, чтобы его теплопроводность позволила сохранять рабочую температуру микросхемы ниже 50 градусов Цельсия. Если устройство постоянно используется с ноутбуком вне помещений, ему потребуется самодельный корпус с прорезями или отверстиями для циркуляции воздуха. Собрать такой корпус можно своими руками из пластикового контейнера или остатков старой радиоаппаратуры, закрепив плату с помощью длинных винтов.

Для наушников своими руками

Простейший стереоусилитель для портативных наушников должен обладать небольшой мощностью, но самым важным параметром будет энергопотребление. В идеальном примере конструкция запитана от пальчиковых батареек, в крайнем случае, от простого адаптера на 3 Вольт. Вам понадобится высококачественная микросхема TDA 2822 или ее аналог (например, КА 2209), электронная схема сборки усилителя своими руками на TDA 2822. Дополнительно возьмите комплектующие:

  • конденсаторы 100 мкФ (4 шт.);
  • до 30 см медного провода;
  • гнездо для провода наушников.

Теплоотводящий элемент понадобится, если желаете сделать усилитель компактным и с закрытым корпусом. Усилитель можете собрать на готовой или самодельной печатной плате либо навесным монтажом. Импульсный трансформатор в источнике питания может создавать помехи, поэтому не используйте его в данном варианте усилителя. Готовый усилитель обеспечит приятный и мощный звук с плеера (записи или радиосигнал), планшета или телефона.

Схема усилителя для сабвуфера

Низкочастотный усилитель собирается своими руками на микросхеме TDA 7294. Используется как для создания мощной акустики с басами в квартире, так и в качестве автоусилителя – в этом случае, правда, нужно приобрести двухполярный источник питания на 30-35 Вольт. На рисунках ниже описано расположение комплектующих, а также номинал резисторов и конденсаторов. Такой усилитель для сабвуфера обеспечит выходную мощность до 100 Ватт с выделяющимися низкими частотами.

Мини усилитель звука для колонок

В качестве устройства усиления звука для отечественных или зарубежных домашних колонок подойдет описанная выше конструкция для ноутбуков. Стационарное размещение устройства позволит выбирать любой адаптер питания из имеющихся в наличии. Миниатюрность и приемлемый внешний вид недорогого усилителя вы сможете обеспечить, соблюдая несколько правил:

  1. Готовая качественная печатная плата.
  2. Прочный пластиковый или металлический корпус (закажите у мастера).
  3. Размещение компонентов заранее спланировано.
  4. Усилитель спаян аккуратно, без лишних капель припоя.
  5. Радиатор касается только микросхемы.
  6. Использованы готовые гнезда для выхода сигнала и ввода питания.

Ламповый усилитель звука своими руками

Ламповые усилители звука – это дорогостоящие устройства при условии, что вы закупаете все комплектующие на собственные средства. Старые радиолюбители иногда держат у себя коллекции ламп и других деталей. Собрать ламповый усилитель на дому своими руками относительно легко, если вы готовы потратить несколько дней на поиск подробных схем в интернете. Схема усилителя звука в каждом случае уникальна и зависит от источника звука (старый магнитофон, современная цифровая техника), источника питания, предполагаемых габаритов и других параметров.

Усилитель звука на транзисторах

Сборка предусилителя звука своими руками без использования сложных микросхем возможна на транзисторах. Усилитель на германиевых транзисторах легко встраивают в современные аудиосистемы, он не требует дополнительной настройки. Недостатком схем на транзисторах считается больший размер плат в сборе. Неприятна и зависимость от «чистоты» фона – вам потребуется экранированный кабель, либо дополнительная схема подавления шумов и пульсаций из сети.

Видео: усилитель мощности звука своими руками

Нашли в тексте ошибку? Выделите её, нажмите Ctrl + Enter и мы всё исправим!

Усилитель на одном транзисторе — здесь представлена конструкция простого УНЧ на одном транзисторе. Именно с подобных схем многие радиолюбители начинали свой путь. Однажды собрав несложный усилитель мы всегда стремимся изготовить более мощное и качественное устройство. И так все идет по нарастающей, всегда присутствует желание изготовить безупречный усилитель мощности.

Показанная ниже простейшая схема усилителя выполнена на одном биполярном транзисторе и шести электронных компонентах, включая динамик. Эта конструкция прибора усиливающего звук низкой частоты, создана как раз для начинающих радиолюбителей. Основная ее цель, это дать понять простой принцип работы усилителя, поэтому она собрана с использованием минимального количества радиоэлектронных элементов.

Этот усилитель естественно обладает небольшой мощностью, для начала она большая и не нужна. Однако, если установить более мощный транзистор и поднять немного напряжение питания, то на выходе можно получить примерно 0,5 Вт. А это уже считается довольно приличной мощностью для усилителя имеющего такую конструкцию. На схеме, для наглядности применен биполярный транзистор c проводимостью n-p-n, вы же можете использовать любые и с любой проводимостью.

Чтобы получить 0,5 Вт на выходе, то лучше всего применить мощные биполярные транзисторы типа КТ819 либо их зарубежные аналоги, например 2N6288, 2N5490. Также можно использовать кремневые транзисторы типа КТ805 их зарубежный аналог — BD148, BD149. Конденсатор в цепи выходного тракта можно установить 0,1mF, хотя его номинальное значение не играет большой роли. Тем не менее он формирует чувствительность прибора относительно частоты звукового сигнала.

Если поставить конденсатор имеющий большую емкость, то тогда на выходе будут преимущественно низкие частоты, а высокие будут срезаться. И наоборот, если емкость будет маленькая, то будут резаться низкие частоты, а высокие пропускаться. Поэтому, этот выходной конденсатор подбирается и устанавливается исходя из ваших предпочтений относительно звукового диапазона. Напряжение питания для схемы нужно выбирать в пределах от 3v — до 12v.

Хотелось бы еще пояснить — данный усилитель мощности представлен вам только в демонстрационных целях, показать принцип работы такого устройства. Звучание этого аппарата конечно будет на низком уровне и не идет ни в какое сравнение с высококачественными устройствами. При усилении громкости воспроизведения, в динамике будут возникать искажения в виде хрипов.

Поддержите проект — поделитесь ссылкой, спасибо!
Читайте также
Лучшие картинки и фото на аватарку: подборка для девушек и женщин Лучшие картинки и фото на аватарку: подборка для девушек и женщин Активируем Eset NOD32 Antivirus Активатор есет нод 32 Активируем Eset NOD32 Antivirus Активатор есет нод 32 Как перепрошить роутер — пошаговая инструкция Обновление для роутера тп линк Как перепрошить роутер — пошаговая инструкция Обновление для роутера тп линк