Система спутниковой навигации GPS – принцип, схема, применение. GPS как работает? Принципы работы GPS-навигатора

Жаропонижающие средства для детей назначаются педиатром. Но бывают ситуации неотложной помощи при лихорадке, когда ребенку нужно дать лекарство немедленно. Тогда родители берут на себя ответственность и применяют жаропонижающие препараты. Что разрешено давать детям грудного возраста? Чем можно сбить температуру у детей постарше? Какие лекарства самые безопасные?

GPS (сокращение от английского Global Positioning System — система глобального позиционирования) — это спутниковая система навигации, работающая во всемирной системе координат WGS 84. GPS позволяет определять местоположение и скорость объектов практически в любом месте Земли. Интересно, что система была разработана и реализована Министерством обороны США, однако в настоящее время используется и для гражданских целей. Россией был создана своя собственная спутниковая система навигации, которая называется и мы о ней уже писали. Системы работают аналогично, однако спутники ГЛОНАСС имеют большую стабильность.

Некоторое время назад GPS в телефонах использовался редко, а потому представлял из себя некую диковинку, которой можно было удивлять людей. Но те времена давно прошли и сегодня нужно хорошенько потрудиться, чтобы найти смартфон, в котором отсутствует поддержка GPS.

Для чего нужен GPS в телефоне/смартфоне/планшете?

GPS используется в первую очередь для определения местоположения устройства. Уже исходя из этого, пользователь может понимать, где находится в данный момент. На этом принципе основаны навигационные карты, которые используются, к примеру, автолюбителями. А вкупе с интернетом карты могут показывать не только местоположение устройства и путь к цели, но и загруженность дорог. Яркий пример — Яндекс.Карты.

Смартфоны с GPS используются не только простыми автомобилистами, они очень популярны у курьеров, а также у таксистов — особенно когда речь идет о крупных городах.

Функция местоположения используется в некоторых сервисах. Например, в социальной сети вы можете разместить фотографию и уточнить координаты, где она была только что запечатлена. Есть сервисы, которые позволяют отмечать свое местоположение не на простых картах, а в магазине или кафе — таким образом пользователь может послать свое сообщение друзьям и пригласить их.

Есть даже сервисы знакомств, основанные на местоположении пользователя в данный момент. Так, пользователь указывает, где он находится и на карте видит других пользователей. К примеру, пользователи могут познакомиться друг с другом, если они находятся в непосредственной близости на карте.

Есть ли недостатки у GPS?

Как таковых недостатков у GPS не существует, однако стоит помнить, что местоположение не всегда может быть достоверным, так как есть пределы погрешности. Для более точного позиционирования можно использовать сразу обе навигационных системы — GPS и ГЛОНАСС, тем более, что они обе используются во многих устройствах.

В остальном GPS имеет сплошные плюсы. К тому же система фактически никак не сказывается на стоимости устройства, что вы можете проследить по стоимости смартфонов: даже самые недорогие устройства оснащаются GPS.

В статье рассмотрен принцип работы, состав и особенности системы спутникового позиционирования GPS (англ. Global Positioning System).
Навигационная система Global Positioning System (GPS) является частью комплекса NAVSTAR, который разработан, реализован и эксплуатируется Министерством обороны США. Разработка комплекса NAVSTAR (NAVigation Satellites providing Time And Range – навигационная система определения времени и дальности) была начата ещё в 1973 году, а уже 22 февраля 1978 года был произведён первый тестовый запуск комплекса, а в марте 1978 года комплекс NAVSTAR начали эксплуатировать. Первый тестовый спутник был выведен на орбиту 14 июля 1974 года, а последний из 24 необходимых спутников для полного покрытия земной поверхности, был выведен на орбиту в 1993 году. Гражданский сегмент военной спутниковой сети NAVSTAR принято называть аббревиатурой GPS, коммерческая эксплуатация системы в сегодняшнем виде началась в 1995 году.
Спустя более 20-ти лет с момента тестового запуска системы GPS и 5-ти лет с момента начала коммерческой эксплуатации Глобальной системы позиционирования GPS, 1 мая 2000 года министерство обороны США отменило особые условия пользования системой GPS, существовавшие до тех пор. Американские военные выключили помеху (SA – selective availability), искусственно снижающую точность гражданских GPS приёмников, после чего точность определения координат с помощью бытовых навигаторов возросла как минимум в 5 раз. После отмены американцами режима селективного доступа точность определения координат с помощью простейшего гражданского GPS навигатора составляет от 5 до 20 метров (высота определяется с точностью до 10 метров) и зависит от условий приема сигналов в конкретной точке, количества видимых спутников и ряда других причин. Приведенные цифры соответствуют одновременному приему сигнала с 6-8 спутников. Большинство современных GPS приёмников имеют 12-канальный приемник, позволяющий одновременно обрабатывать информацию от 12 спутников. Военное применение навигации на базе NAVSTAR обеспечивает точность на порядок выше (до нескольких миллиметров) и обеспечивается зашифрованным P(Y) кодом. Информация в C/A коде (стандартной точности), передаваемая с помощью L1, распространяется свободно, бесплатно, без ограничений на использование.

Основой системы GPS являются навигационные спутники, движущиеся вокруг Земли по 6 круговым орбитальным траекториям (по 4 спутника в каждой), на высоте 20180 км. Спутники GPS обращаются вокруг Земли за 12 часов, их вес на орбите составляет около 840 кг, размеры – 1.52 м. в ширину и 5.33 м. в длину, включая солнечные панели, вырабатывающие мощность 800 Ватт. 24 спутника обеспечивают 100 % работоспособность системы навигации GPS в любой точке земного шара. Максимальное возможное число одновременно работающих спутников в системе NAVSTAR ограничено числом 37. В настоящий момент на орбите находится 32 спутника, 24 основных и 8 резервных на случай сбоев.


Слежение за орбитальной группировкой осуществляется с главной управляющей станции (Master Control Station – MCS), которая находится на базе ВВС Шривер, шт. Колорадо, США. С нее осуществляется управление системой навигации GPS в мировом масштабе. База ВВС Шривер (Schriever) является местом размещения 50-го космического соединения США – подразделения командования воздушно-космических сил.

Наземная часть системы GPS состоит из десяти станций слежения, которые находятся на островах Кваджалейн и Гавайях в Тихом океане, на острове Вознесения, на острове Диего-Гарсия в Индийском океане, а также в Колорадо-Спрингс, в мысе Канаверел, шт. Флорида и т.д.. Количество наземных станций непрерывно растет, на всех станциях слежения используются приемники GPS для пассивного слежения за навигационными сигналами всех спутников. Информация со станций наблюдения обрабатывается на главной управляющей станции MCS и используется для обновления эфемерид спутников. Загрузка навигационных данных, состоящих из прогнозированных орбит и поправок часов, производится для каждого спутника каждые 24 часа.

Определение координат и GPS навигация.
Основой идеи определения координат GPS-приемника является вычисление расстояния от него до нескольких спутников, расположение которых считается известным. Определение местоположения GPS-приёмника в пространстве осуществляется на базе алгоритма измерения расстояния от точки наблюдения до спутника. Дальнометрия основана на вычислении расстояния по временной задержке распространения радиосигнала от спутника к приемнику. Если знать время распространения радиосигнала, то пройденный им путь легко вычислить. Приёмники работают в пассивном режиме и вычисляют свои координаты, но это совсем не означает, что координаты GPS-приёмника будут известны кому либо, кроме его владельца. Каждый спутник системы GPS непрерывно генерирует радиоволны двух частот – L1=1575.42МГц и L2=1227.60МГц. Каждый GPS-приемник имеет собственный генератор, работающий на той же частоте и модулирующий сигнал по тому же закону, что и генератор спутника. Таким образом, по времени задержки между одинаковыми участками кода, принятого со спутника и сгенерированного самостоятельно, можно вычислить время распространения сигнала, а, следовательно, и расстояние до спутника.
Основная проблема при вычислении расстояния до спутника системы GPS связанна с синхронизацией часов на спутнике и в приемнике. Даже мизерная погрешность может привести к огромной ошибке в определении расстояния. Каждый спутник несет на борту высокоточные атомные часы, которые встроить в обычный GPS-приёмник невозможно. Чтобы скоррелировать временное рассогласование и избежать огромных ошибок в позиционировании, в систему GPS введен принцип избыточности для определения трехмерных координат на поверхности Земли. GPS-приёмник использует сигналы не трех, а как минимум четырех спутников и на основании вспомогательных сигналов вносит все необходимые коррективы в работу своих часов. Кроме навигационных сигналов, спутник непрерывно передает различную служебную информацию. GPS-приёмник получает, например, эфемериды (точные данные об орбите спутника), прогноз задержки распространения радиосигнала в ионосфере, а также сведения о работоспособности спутника (так называемых “альманах”, содержащий обновляемые каждые 12.5 минут сведения о состоянии и орбитах всех спутников). Эти данные передаются со скоростью 50 бит/с на частотах L1 или L2.

Расстояние до навигационных спутников системы GPS обозначим как А, В и С. Допустим, что известно расстояние А до одного спутника. В данном случае координаты GPS-приемника определить нельзя, т.к. он может находится в любой точке сферы с радиусом А, описанной вокруг спутника. Если известна удаленность В приемника от второго спутника, то определение координат также не представляется возможным – объект находится где-то на окружности (показана синим цветом), которая является пересечением двух сфер. Известное расстояние С до третьего спутника сокращает неопределенность в координатах до двух точек (обозначены красными точками). Этого уже достаточно для однозначного определения координат GPS-приемника. Не смотря на то, что мы имеем две точки с координатами, только одна находится на поверхности Земли, а вторая, ложная, оказывается либо глубоко внутри Земли, либо очень высоко над ее поверхностью. Таким образом, теоретически для трехмерной GPS навигации достаточно знать расстояния от приемника до трех спутников, но как мы уже говорили GPS-приемник, использует сигналы не трех, а как минимум четырех спутников и на основании вспомогательных сигналов вносит все необходимые коррективы для повышения точности навигации.
Недостатками GPS навигации является то, что при определённых условиях сигнал может не доходить до GPS-приёмника, поэтому практически невозможно определить своё точное местонахождение в глубине квартиры внутри железобетонного здания, в подвале или в тоннеле. Рабочая частота GPS находится в дециметровом диапазоне радиоволн, поэтому уровень приёма сигнала от спутников может ухудшиться под плотной листвой деревьев, в районах с плотной городской застройкой или из-за большой облачности, а это скажется на точности позиционирования. Магнитные бури и наземные радиоисточники тоже способны помешать нормальному приёму сигналов GPS. Карты, предназначенные для GPS навигации, быстро устаревают и могут быть не точными, поэтому нужно верить не только данным GPS-приёмника, но и своим собственным глазам. Особенно стоит отметить, что работа глобальной системы навигации GPS полностью зависима от министерства обороны США и нельзя быть уверенным, что в любой момент времени США не включит помеху (SA – selective availability) или вообще полностью отключит гражданский сектор GPS как в отдельно взятом регионе, так и вообще. Претенденты уже были. Благо, что у GPS есть альтернатива в виде навигационных систем ГЛОНАСС (Россия) и Galileo (ЕС), которые в перспективе должны получить широкое распространение.

27 мая 2008, Богомазов Алексей 1

Глобальная система позиционирования (Global Positioning System) или сокращенно GPS является единственной в мире полнофункциональной спутниковой системой навигации. Более 25 специализированных спутников постоянно посылают точные (в первую очередь по времени) радиосигналы, которые улавливаются GPS-приемниками по всему миру. Это вещание позволяет приемникам (ресиверам) точно определять свое месторасположение (долготу, широту, положение над уровнем моря) в любую погоду, в любое время суток, в любой точке земного шара.

К данному моменту GPS уже стала жизненно необходимой системой, она является неотъемлемой частью современной навигации на земле, в море, в воздухе, кроме того, это важный инструмент для составления карт, а также наблюдения за изменением ландшафта земной поверхности. Эта система вносит определенный вклад в такие, казалось бы, сторонние отрасли как телекоммуникации и разного рода научные исследования (к примеру, исследование природы землетрясений).

Система GPS была разработана министерством обороны США, контролируется им же. Несмотря на то, что содержание данной системы обходится примерно в $400 000 000 в год (если считать старение спутников), простые смертные могут свободно использовать ее для своих скромных нужд.

В конце 2005 года к уже запущенным спутникам был добавлен еще один спутник следующего поколения. Этот спутник обладал рядом дополнительных возможностей, одной из которых является поддержка второго гражданского GPS-сигнала, который именуется L2C и предназначен для повышения точности и надежности работы системы в целом. В ближайшие годы планируется запускать все больше модернизированных спутников, в перспективе они должны добавить третий и четвертый сигналы, а кроме того, кучу новых возможностей, которые будут использоваться исключительно военными (кто бы сомневался).

В августе 2000 года стала общедоступна The Wide-Area Augmentation System (WAAS), а если по-человечески - система панорамного обзора, которая позволила определять местоположение портативного GPS-приемника с точностью до двух метров. Два метра, конечно, неплохо, но можно добиться точности и в один сантиметр, если использовать Differential GPS (DGPS).

Сферы использования GPS

Наверно, многие слышали о GPS , многие пользуются им ежедневно. Однако для подавляющего большинства людей это остается лишь технологией, позволяющей определить их местоположение на поверхности Земли. На самом деле, это немного не так, используется сия технология в самых разнообразных сферах человеческой деятельности.

Нужно сказать, что без точной временной синхронизации моментально возрастет уровень ошибок при передаче информации, а в некоторых случаях передача станет невозможна. Это связано с нюансами реализации оборудования. К примеру, при определенной реализации передачи в обыкновенных локальных сетях, сетевые карты должны синхронизироваться чуть ли не после передачи каждого байта. Это конечно совершенно отдаленный пример, но представьте, какой уровень синхронизации должен быть в гораздо более серьезных промышленных и научных установках.

Атомные часы на спутниках отсчитывают "GPS time ". Это время измеряется в днях, часах, минутах, секундах, ну и так далее. В общем все также как в земном времени, которое базируется на вращении Земли. Основным отличием является то, что GPS-время абсолютно не зависит от вращения Земли. GPS-день составляет 86400 секунд в СИ (кстати, СИ , это не система измерений, это система интернациональная , вроде пустяк, а знают не все), что является стандартом International Atomic Time (TAI) (Международное атомное время).

В 1980 году GPS-время было приравнено к Coordinated Universal Time (UTC) (универсальное синхронизированное время (среднее время по Гринвичу)). Таким образом, GPS-часы начали тикать 6 января 1980 года в 00:00:00 UTC (00:00:19 TAI), а разница в 19 секунд набежала из-за малопонятных "leap seconds". Но это мы уже уходим в дебри специальных дисциплин, так что если кому интересно - дерзайте, заодно и теорию относительности подучите, она тут на каждом шагу встречается.

  • Геофизика и геология . Высокоточные измерения напряжение различных слоев земли могут быть сделаны с помощью GPS. Вначале давайте разберемся с напряжением, это никак не связано с батарейками, здесь это скорее деформация и смещение горных пород под действием каких-либо сил. Для измерения этой величины достаточно взять 2 GPS-приемника, один из которых должен быть неподвижным (насколько это возможно), тогда легко определить смещение второго приемника относительно первого, что и будет искомой величиной. Эта технология находит применения в наблюдении за вулканами, и позволяет заранее предсказать причину и форму будущих изменений окружающего ландшафта.

История развития GPS

Разработка GPS частично основана на аналогичных наземных системах радио-навигации таких как LORAN (была разработана в начале 1940-х и использовалась в ходе Второй Мировой). Дополнительным толчком к развитию этой системы явился запуск первого искусственного спутника в СССР в 1957 году. Команда американских ученых во главе с Dr. Richard B. Kershner проводила наблюдение за передачей радио сигналов со спутника. Они заметили одну интересную закономерность. В соответствии с эффектом Доплера, частота радиосигнала, посланного спутником, уменьшается с увеличением расстояния от спутника (чем больше прошел сигнал, тем ниже его частота). Скоро пришло понимание, что, зная свое точное положение на земном шарике, а также частоту сигналов, посылаемых спутником, они с высокой точностью могут определить местоположение спутника на земной орбите (в соответствии с расчетами того же Доплера). Нетрудно понять, что обратное утверждение также верно, зная расположение спутника и частоту сигнала, можно определить свое месторасположение на Земле.

Первая спутниковая навигационная система Transit (использовалась военно-морскими силами США) была успешно испытана в 1960 году. В этой системе использовалось 5 спутников, и она позволяла производить навигационные корректировки приблизительно каждый час. В 1967 году морское ведомство США разработало новый спутник - Timation, который предоставил возможность разместить у себя на борту, а фактически вывести на орбиту, точные часы (технология, на которую опирается GPS). В 1970-х наземная навигационная система Omega Navigation System стала первой радио навигационной системой, охватывающей весь земной шар. Эта система основывалась на сравнении фаз сигналов.

Первый экспериментальный Block-I GPS-спутник был запущен в феврале 1978 года. ПервыеGPS-спутники производились Rockwell International, а сейчас производятся Lockheed Martin. После событий 1983 года, когда система противовоздушной обороны СССР сбила пассажирский авиалайнер KAL 007 в своем воздушном пространстве (лайнер попал в воздушное пространство СССР по ошибке), убив всех, кто находился на борту (всего 269 человек), президент США Рональд Рейган заявил, что GPS может стать доступна гражданским лицам сразу после завершения ее строительства. К 1985 году на орбиту было запущено еще 10 Block-I спутников. Первый современный Block-II спутник был запущен 14 февраля 1989 года . К декабрю 1993 года количество спутников было доведено до количества, при котором система уже могла функционировать, а к 17 января 1994 года все 24 спутника были на орбите.

В 1996 году президент США Билл Клинтон в полной мере осознал важность GPS не только для военных нужд, но также и для гражданского использования. После этого выходит директива, устанавливающая статус GPS как двойственной системы (и для военных и для гражданских). В 1998 году вице-президент США Эл Гор объявляет о намерениях добавить в GPS еще два гражданских сигнала для повышения точности и надежности работы системы, а также для обеспечения более высокого уровня безопасности полетов.

Последний запуск спутника был произведен в сентябре 2005 года , в то время как дата запуска самого старого GPS-спутника, функционирующего сейчас, - февраль 1989 года .

GPS-cпутники

Система GPS использует спутники, расположенные определенным образом, а точнее на Intermediate circular orbit (ICO) . Это орбиты, заключенные между околоземной орбитой (1400 км) и геосинхронной орбитой (35790 км). Кроме того, на орбите постоянной присутствуют три незадействованных спутника на случай непредвиденных ситуаций и всевозможных неисправностей и ошибок. Каждый спутник облетает Землю ровно два раза в сутки на высоте 20200 км. Орбиты расположены таким образом, что в любой момент времени практически любая точка земной поверхности находится в покрытии сразу четырех спутников. В каждой из шести орбитальных плоскостей находится шесть активных спутников. Орбита каждого спутника отклонена на 55 градусов от плоскости экватора.

Положение спутников контролируется пятью наземными станциями, расположенными по всему миру (Hawaii, Kwajalein, Ascension Island, Diego Garcia, Colorado Springs). Кроме того, существует одна главная станция (авиабаза Фалькон в шт. Колорадо), которая и передает всю информацию на спутники через второстепенные станции слежения. В этой информации обычно содержится регулировка времени с точность до одной микросекунды.

Каждый спутник регулярно передает во внешний мир время, в соответствии со своими атомными часами и другую информацию в цифровом виде. Обычно спутники передают свое точное положение на орбите и приблизительное положение всех остальных действующих GPS-спутников. Казалось бы, зачем передавать информации о нахождении остальных спутников, однако наземные приемники выбирают самый сильный полученный сигнал, а потом, по полученной информации пытаются поймать менее сильные сигналы других спутников.

GPS-приемники

Основным назначение GPS-приемника является определение своего местоположения на поверхности Земли. Это положение однозначно определяется с помощью трех параметров - географической широты и долготы, а также положения над уровнем моря. Кроме того, приемник должен определять точное время, не в смысле который сейчас час, а в смысле точной синхронизации со спутником. Все эти параметры определяются с помощью процесса трилатерации . Если в двух слов, то трилатерация заключается в нахождении положения объекта с помощью как минимум четырех точек с известными координатами и известными расстояниями от каждой точки до объекта. Вообще говоря, находят они не расстояние, а псевдодальность (pseudorange ), что является первым приближением расстояния.

Итак, спутники посылают сигнал, в котором зашифрованы их собственные координаты и время, когда сигнал был отправлен. Получив сигнал, приемник расшифровывает его, высчитывает орбиту каждого из спутников, а затем находит расстояние до этих спутников. Расчет расстояния производится учитывая задержку между временем, когда сигнал был отправлен и когда был получен. Таким образом, зная время, за которое пришел сигнал, легко найти и расстояние, умножив его на скорость сигнала.

Процесс точного определения задержки, пожалуй, самый трудоемкий. Каждый спутник периодически посылает 1023 бита псевдо произвольной последовательности (pseudo random sequence ), это последовательность, которая обладает лишь некоторыми свойствами произвольной. У каждого спутника такая последовательность своя, что позволяет им делить одни и те же радиочастоты с помощью параллельного доступа с кодовым разделением (Code division multiple access ). Приемник генерирует последовательности, которые посылает каждый из спутников и сравнивает с полученными, таким образом, приемник может легко распознать каждый из спутников.

Вернемся к вопросу трилатерации. Приемник уже определил 4 положения спутников и 4 расстояния до них. Теперь представьте 4 сферы с центрами в местах, где находятся спутники и радиусами равными расстояниям до спутников. Вообще говоря, исходя из школьной стереометрии, возможны 3 варианта: 2 точки пересечения, одна точка пересечения и никаких точек пересечения. По очевидным причинам точкой пересечения является местонахождения приемника. Две точки возможны если все спутники находятся в одной плоскости, что не всегда возможно (3 спутника всегда лежат в одной плоскости). Этот вариант в принципе тоже приемлем, так как одна точка находится где-то на Земле, а вторая симметрична относительно плоскости, в которой лежат спутники, а точнее где-то в космосе. Выбрать нужную достаточно просто. Если же точка пересечения одна, то она и является искомой.

При работе реальных приемников все несколько сложнее, виной этому несколько вполне определенных причин. Стоимость GPS-приемника начинается с $90 , а стоимость атомных часов примерно равна стоимости нескольких десятков произведений немецкого автопрома, а 50 мерседесов стоят явно дороже 50 баксов. Таким образом, расстояние высчитать не так то просто. К счастью, достаточно точные обыкновенные часы, которые к великой радости, могут дать достаточно точное сравнение для времени сигнала. В результате этого возникает погрешность определения географического положения, к счастью небольшая (сферы пересекаются около одной точки).

Немного выше, когда я рассказывал о вычислении расстояния, я не зря проехал мимо скорости сигнала, это одна из самых больших проблем GPS. Если Вы решали школьные задачи по физике, то там эта скорость считается равной скорости света в вакууме, что, вообще говоря, не верно, в воздухе свет движется медленнее, другое дело, что отношение этих скоростей равно единице и первая цифра после нуля где-то достаточно далеко. Однако, при вычислении точного положения, эти цифры вносят значительный вклад. Самое страшное, что скорость сигнала в ионосфере (проблема в основном здесь) меняется практически непредсказуемо, и чем толще слой, через который должен пройти сигнал, тем больше может быть ошибка. Если спутник висит прямо над приемником, то ошибка минимальна. Если же нет, то ошибка растет вместе с углом отклонения спутника к горизонту. Для исправления этой ошибки, определяется сначала приблизительное положение приемника, а затем строится математическая модель и, исходя из нее, устраняется погрешность.

Изменение скорости радиосигнала в ионосфере зависит от его частоты, поэтому вторую частоту L2 (об этом ниже) для устранения этой ошибки. Некоторые военные и дорогие гражданские (обычно используемые для мониторинга) приемники могут сравнивать частоты L1 и L2 , рассчитывать задержку сигнала в атмосфере и производить точную корректировку.

GPS-сигналы подвергаются рассеянию и отражению на окружающей поверхности - здания, рельеф местности, плотные виды почвы и т.д. Это причина возникновения еще одной ошибки. Множество методик приема призвано уменьшить эту ошибку (в частности Narrow Correlator spacing - достаточно специфический вопрос, я так понимаю, сравнивают полученную функцию с тем, что должно быть с достаточно жесткими условиями). Если же сигнал заблудился и долго где-то путешествовал, то приемник сам способен распознать это и проигнорировать такой сигнал. Если же сигнал только отразился, например, от земной поверхности, отфильтровать его гораздо сложнее (используются специальные антенны). Это связано с тем, что такие погрешности малозаметны при сравнении с основным сигналом и очень похожи на искажения, вызванные обычными движениями воздушных масс.

Многие GPS-приемники могут передавать информацию ПК или другим приборам, используя NMEA 0183 протокол. NMEA 2000 - более новый, однако менее распространенный протокол.

Частоты GPS

Итак, рассмотрим несколько частот, которые присутствуют в спектре электромагнитных волн (радиоволн) GPS: (Почему несколько? Система наполовину военная, всей правды Вам никто не расскажет).

  • L1 (1575.42 МГц) : первая несущая частота;
  • L2 (1227.60 МГц) : вторая несущая частота; Спутник излучает синусоидальные сигналы на двух этих частотах. Как было сказано выше, перед отправкой, эти сигналы модулируются псевдо случайной последовательностью (фазовая манипуляция). Частота L1 модулируется двумя видами кодов: C/A-кодом (код свободного доступа) и P(Y)-кодом (код санкционированного доступа), а частота L2- только P-кодом. Не стоит забывать и про информацию о положении спутников и времени, которая также присутствует в этом сигнале. Coarse Acquisition C/A (код свободного доступа) имеет частоту импульсов 1023 МГц и период повторения 0,001 сек. Этот код декодируется без проблем, однако определение точного положение с его помощью практически нереально. Protected код P(Y) (код санкционированного доступа) имеет частоту следования импульсов 10,23 МГц и период повторения 7 суток. Этот код меняется раз в неделю, а вносить в него изменения могут только доверенные лица министерства обороны США. Точнее могли, американцы дали маху и информация от них утекла. Пришлось принять дополнительные меры безопасности: в любой момент может быть запущен режим Anti Spoofing. При этом P сигнал кодируется и превращается уже в Y сигнал, который может быть расшифрован только аппаратно. Selective Availability SA (SA, режим выборочного доступа) специально создан для защиты от несанкционированных пользователей. При работе этого режима в информационном сообщении посылается не информация о положении спутников и времени, а несколько исправленная информация. Вносятся небольшие поправки (10 метров горизонтально и 30 вертикально, примерно разумеется) и точность определения сразу значительно снижается.
  • L3 (1381.05 МГц) : это вклад спутников в программу обороны США, сия частота предназначена для обнаружения запуска ракет, ядерных взрывов и прочих событий, сопровождающихся выбросами большого количества энергии;
  • L4 (1841.40 МГц) : сигнал для дополнительного исправления ошибок при прохождении сигналом ионосферы;
  • L5 (1176.45 МГц) : частота для подачи сигнала СОС (safety-of-life (SoL)). На этой частоте будут подаваться сигналы бедствия, при этом прогнозируются минимальные погрешности приема или вообще их отсутствие. Первый спутник Block-IIF, поддерживающий возможность вещания на этой частоте должен быть запущен в 2008 году.

Возможности улучшения GPS

  • Differential GPS (DGPS) - дифференциальный GPS . Позволяет увеличить точность определения с 4-20 метров до 1-3 метра. Принцип заключается в создании наземной сети стационарных GPS-приемников, которые рассчитывают свои координаты, исходя из показаний спутников (которые всегда имеют погрешность), и сравнивают со своими координатами, которые заранее известны. Поправка транслируется в локальном пространстве как FM сигнал. Этот метод позволяет дешевым гражданским приемникам значительно увеличить свою точность.
  • The Wide Area Augmentation System (WAAS) - система панорамного обзора . Строятся наземные станции, которые занимают примерно тем же, что и в предыдущем случае, только не транслируют это в эфир, а передают дополнительным спутникам на геосинхронной орбите, а те в свою очередь транслируют это в эфир, кроме того, они сообщают информацию о задержке сигнала в ионосфере и т.п. Эта система может существенно помочь в воздухоплавании в условиях плохой и нулевой видимости. К сожалению, сейчас запущено только несколько WAAS спутников. Сейчас эта система функционирует только в районах западного и восточного побережья США. Однако, аналоги этой системы создаются в Европе EGNOS, the Euro Geostationary Navigation Overlay Service), и Японии (MSAS, the Multi-Functional Satellite Augmentation System). Эти системы практически идентичны WAAS.
  • A Local Area Augmentation System (LAAS) . Коррекция аналогична предыдущему случаю, но трансляция происходит не со спутника, а с наземной станции, вблизи которой требуется повышенная точность (например, аэропорт).

GPS - спутниковая система навигации, обеспечивающая измерение расстояния, времени и определяющая местоположениe. Позволяет в любом месте Земли (не включая приполярные области), почти при любой погоде, а также в космическом пространстве вблизи планеты определить местоположение и скорость объектов. Система разработана, реализована и эксплуатируется Министерством обороны США.

Краткая характеристика GPS

Спутниковая навигационная система Министерства Обороны США — GPS, называется также NAVSTAR. Система состоит из 24 навигационных искусственных спутников Земли (НИСЗ) , наземного командно-измерительного комплекса и аппаратуры потребителей. Она является глобальной, всепогодной, навигационной системой, обеспечивающей определение координат объектов с высокой точностью в трехмерном околоземном пространстве. Спутники GPS помещены на шести средневысоких орбитах (высота 20183 км) и имеют период обращения 12 часов Плоскости орбит расположены через 60° и наклонены к экватору под углом 55°. На каждой орбите находится 4 спутника. 18 спутников — это минимальное количество для обеспечения видимости в каждой точке Земля не менее 4-х НИСЗ.

Основной принцип использования системы - определение местоположения путём измерения расстояний до объекта от точек с известными координатами - спутников. Расстояние вычисляется по времени задержки распространения сигнала от посылки его спутником до приёма антенной GPS-приёмника. То есть, для определения трёхмерных координат GPS-приёмнику нужно знать расстояние до трёх спутников и время GPS системы. Таким образом, для определения координат и высоты приёмника используются сигналы как минимум с четырёх спутников.

Система предназначена для обеспечения навигации воздушных и морских судов и определения времени с высокой точностью . Она может применяться в режиме двухмерной навигации – 2D определение навигационных параметров объектов на поверхности Земли) и в трехмерном режиме — ЗD (измерение навигационных параметров объектов над поверхностью Земли). Для нахождения трехмерного положения объекта требуется измерить навигационные параметры не менее 4-х НИСЗ, а при двухмерной навигации — не менее 3-х НИСЗ. В GPS используется псевдодальномерный способ определения позиции и псевдорадиально скоростной метод нахождения скорости объекта.

Для повышения точности результаты определений сглаживаются с помощью фильтра Калмана. Спутники GPS передают навигационные сигналы на двух частотах: F1 = 1575,42 и F2=1227,60 МГц. Режим излучения — непрерывный с псевдошумовой модуляцией. Навигационные сигналы представляют собой общедоступный С/А-код (course and acquisition), передаваемый только на частоте F1, и защищенный Р-код (precision code), излучаемый на частотах F1, F2.

В GPS для каждого НИСЗ определен свой уникальный С/А-код и уникальный Р-код. Такой вид разделения сигналов спутников называется кодовым. Он позволяет бортовой аппаратуре распознавать, какому спутнику принадлежит сигнал, когда все они осуществляют передачу на одной частоте GPS предоставляет два уровня обслуживания потребителей точные определения (РРS Precise positioning Service) и стандаршые данные (SPS Standart Positioning Service) PPS основывается на точном коде, а SPS — на общедоступном. Уровень обслуживания РРS предоставляется военным и федеральным службам США, а SPS — массовому гражданскому потребителю.Кроме навигационных сигналов, спутник регулярно передает сообщения, которые содержат информацию о состоянии спутника, его эфемеридах, системном времени, прогнозе ионосферной задержки, показателях работоспособности. Бортовая аппаратура GPS состоит из антенны и приемоиндикатора. ПИ включает в себя приемник, вычислитель, блоки памяти, устройства управления и индикации. В блоках памяти хранятся необходимые данные, программы решения задач и управления работой приемоиндикатора. В зависимости от назначения используется два вида бортовой аппаратуры: специальная и для массового потребителя.Специальная аппаратура предназначена для определения кинематических параметров ракет, военных самолетов, кораблей и специальных судов. При нахождении параметров объектов в ней используются Р и С/А коды. Эта аппаратура обеспечивает практически непрерывные определения с точностью: местоположения объекта — 5+7 м, скорости — 0.05+0.15 м/с, времени — 5+15 нс

Основное применение навигационных спутниковой системы GPS:

  • Геодезия: с помощью GPS определяются точные координаты точек и границы земельных участков
  • Картография: GPS используется в гражданской и военной картографии
  • Навигация: с применением GPS осуществляется как морская, так и дорожная навигация
  • Спутниковый мониторинг транспорта: с помощью GPS ведётся мониторинг за положением, скоростью автомобилей, контроль за их движением
  • Сотовая связь: первые мобильные телефоны с GPS появились в 90-х годах. В некоторых странах, например США это используется для оперативного определения местонахождения человека, звонящего 911.
  • Тектоника, Тектоника плит: с помощью GPS ведутся наблюдения движений и колебаний плит
  • Активный отдых: есть разные игры, где применяется GPS, например, Геокэшинг и др.
  • Геотегинг: информация, например фотографии «привязываются» к координатам благодаря встроенным или внешним GPS-приёмникам.

Определение координат потребителя

Местоопределение по расстояниям до спутников

Координаты местоположения вычисляются на основе измеренных дальностей до спутников. Для определения местоположения необходимо провести четыре измерения. Трех измерений достаточно, если уметь исключать неправдоподобные решения какими-то другими доступными способами. Еще одно измерение требуется по техническим причинам.

Измерение расстояния до спутника

Расстояние до спутника определяется путем измерения промежутка времени, который требуется радиосигналу, чтобы дойти от спутника до нас. Как спутник, так и приемник генерируют один и тот же псевдослучайный код строго одновременно в общей шкале времени. Определим, сколько времени потребовалось сигналу со спутника, чтобы дойти до нас, путем сравнения запаздывания его псевдослучайного кода по отношению коду приемника.

Обеспечение совершенной временной привязки

Точная временная привязка — ключ к измерению расстояний до спутников. Спутники точны по времени, поскольку на борту у них — атомные часы. Часы приемника могут и не быть совершенными, так как их уход можно исключить при помощи тригонометрических вычислений. Для получения этой возможности необходимо произвести измерение расстояния до четвертого спутника. Необходимость в проведении четырех измерений определяет устройство приемника.

Определение положения спутника в космическом пространстве.

Для вычисления своих координат нам необходимо знать как расстояния до спутников, так и местонахождение каждого в космическом пространстве. Спутники GPS движутся настолько высоко, что их орбиты очень стабильны и их можно прогнозировать с большой точностью. Станции слежения постоянно измеряют незначительные изменения в орбитах, и данные об этих изменениях передаются со спутников.

Ионосферные и атмосферные задержки сигналов.

Существуют два метода, которые можно использовать, чтобы сделать ошибку минимальной. Во-первых, можно предсказать, каково будет типичное изменение скорости в обычный день, при средних ионосферных условиях, а затем ввести поправку во все наши измерения. Но, к сожалению, не каждый день является обычным. Другой способ состоит в сравнении скоростей распространения двух сигналов, имеющих разные частоты несущих колебаний. Если сравнить время распространения двух разночастотных компонентов сигнала GPS, то сможем выяснить, какое замедление имело место. Этот метод корректировки достаточно сложен и используется только в наиболее совершенных, так называемых «двухчастотных» приемниках GPS.

Многолучевость.

Еще один тип погрешностей — это ошибки «многолучевости». Они возникают, когда сигналы, передаваемые со спутника, многократно переотражаются от окружающих предметов и поверхностей до того, как попадают в приемник.

Геометрический фактор уменьшения точности.

Хорошие приемники снабжают вычислительными процедурами, которые анализируют относительные положения всех доступных для наблюдения спутников и выбирают из них четырех кандидатов, т.е. наилучшим образом расположенные четыре спутника.

Результирующая точность GPS.

Результирующая погрешность GPS определяется суммой погрешностей от различных источников. Вклад каждого из них варьируется в зависимости от атмосферных условий и качества оборудования. Кроме того, точность может быть целенаправленно снижена Министерством обороны США в результате установки на спутниках GPS так называемого режима S/A («Selective Availability»- ограниченный доступ). Этот режим разработан для того, чтобы не дать возможному противнику тактического преимущества в определении местоположения с помощью GPS. Когда и если этот режим установлен, он создает наиболее существенную компоненту суммарной погрешности GPS.

Вывод:

Точность измерений с помощью GPS зависит от конструкции и класса приёмника, числа и расположения спутников (в реальном времени), состояния ионосферы и атмосферы Земли (сильной облачности и т.д.), наличия помех и других факторов. «Бытовые» GPS-приборы, для «гражданских» пользователей, имеют погрешность измерения в диапазоне от ±3-5м до ±50м и больше (в среднем, реальная точность, при минимальной помехе, если новые модели, составляет ±5–15 метров в плане). Максимально возможная точность достигает +/- 2-3 метра на горизонтали. По высоте – от ±10-50м до ±100-150 метров. Высотомер будет точнее, если проводить калибровку цифрового барометра по ближайшей точке с известной точной высотой, (из обычного атласа, например) на ровном рельефе местности или по известному атмосферному давлению (если оно не слишком быстро меняется, при перемене погоды). Измерители высокой точности «геодезического класса» – точнее на два-три порядка (до сантиметра, в плане и по высоте). Реальная точность измерений обусловлена различными факторами, например – удаленностью от ближайшей базовой (корректирующей) станции в зоне обслуживания системы, кратностью (числом повторных измерений / накоплений на точке), соответствующим контролем качества работ, уровнем подготовки и практическим опытом специалиста. Такое высокоточное оборудование — может применяться только специализированными организациями, специальными службами и военными.

Для повышения точности навигации рекомендуется использовать GPS-приёмник – на открытом пространстве (нет рядом зданий или нависающих деревьев) с достаточно ровным рельефом местности, и подключать дополнительную внешнюю антенну. Для целей маркетинга, таким аппаратам приписывают «двойную надёжность и точность» (ссылаясь на, одновременно используемые, две спутниковые системы, Глонасс и Джипиэс), но реальное фактическое, улучшение параметров (повышение точности определения координат) может составлять величины — лишь до нескольких десятков процентов. Возможно только заметное сокращение времени горячего-тёплого старта и продолжительности измерений

Качество измерений джипиэс ухудшается, если спутники располагаются на небе плотным пучком или на одной линии и «далеко» – у линии горизонта (всё это называется «плохая геометрия») и есть помехи сигналу (закрывающие, отражающие сигнал высотные здания, деревья, крутые горы поблизости). На дневной стороне Земли (освещённой, в данный момент, Солнцем) — после прохождения через ионосферную плазму, радиосигналы ослабляются и искажаются на порядок сильнее, чем на ночной. Во время геомагнитной бури, после мощных солнечных вспышек — возможны перебои и длительные перерывы в работе спутникового навигационного оборудования.

Фактическая точность джипиэски зависит от типа GPS-приемника и особенностей сбора и обработки данных. Чем больше каналов (их должно быть не меньше 8) в навигаторе, тем точнее и быстрее определяются верные параметры. При получении «вспомогательных данных A-GPS сервера местоположения» по сети Интернет (путём пакетной передачи данных, в телефонах и смартфонах) — увеличивается скорость определения координат и расположения на карте

WAAS (Wide Area Augmentation System, на американском континенте) и EGNOS (European Geostationary Navigation Overlay Services, в Европе) – дифференциальные подсистемы, передающие через геостационарные (на высоте от 36 тыс.км в нижних широтах до 40 тысяч километров над средними и высокими широтами) спутники корректирующую информацию на GPS-приёмники (вводятся поправки). Они могут улучшить качество позиционирования ровера (полевого, передвижного приемника), если поблизости располагаются и работают наземные базовые корректирующие станции (стационарные приёмники опорного сигнала, уже имеющие высокоточную координатную привязку). При этом полевой и базовый приёмник должны одновременно отслеживать одноимённые спутники.

Для повышения скорости измерений рекомендуется применять многоканальный (8-и канальный и более), приёмник с внешней антеной. Должны быть видимы, как минимум, три спутника GPS. Чем их больше, тем лучше результат. Необходима, так же, хорошая видимость небосвода (открытый горизонт). Быстрый, «горячий» (длительностью в первые секунды) или «тёплый старт» (полминуты или минута, по времени) приёмного устройства — возможен, если он содержит актуальный, свежий альманах. В случае, когда навигатор долго не использовался, приёмник вынужден получать полный альманах и, при его включении, будет производиться холодный старт (если прибор с поддержкой AGPS, тогда быстрее — до нескольких секунд). Для определения только горизонтальных координат (широта / долгота) может быть достаточно сигналов трёх спутников. Для получения трёхмерных (с высотой) координат — нужны, как минимум, четыре сп-ка. Необходимость создания собственной, отечественной системы навигации связана с тем, что GPS – американская, потенциальных противников, которые могут в любой момент Ч, в своих военных и геополитических интересах, селективно отключить, «глушить», модифицировать её в каком-либо регионе или увеличить искусственную, систематическую ошибку в координатах (для иностранных потребителей этой услуги), что и в мирное время всегда присутствует.

Поддержите проект — поделитесь ссылкой, спасибо!
Читайте также
Лучшие картинки и фото на аватарку: подборка для девушек и женщин Лучшие картинки и фото на аватарку: подборка для девушек и женщин Активируем Eset NOD32 Antivirus Активатор есет нод 32 Активируем Eset NOD32 Antivirus Активатор есет нод 32 Как перепрошить роутер — пошаговая инструкция Обновление для роутера тп линк Как перепрошить роутер — пошаговая инструкция Обновление для роутера тп линк